| 研究生: |
孟和額爾登 Munkh-Erdene Altangerel |
|---|---|
| 論文名稱: |
應用ASTER影像於南蒙古戈壁沙漠區之地表礦物辨識 Mapping surface materials of the Gobi desert area using ASTER images, Southern Mongolia |
| 指導教授: |
張中白
Chang, Chung-Pai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 風化礦物 、N維視覺化工具 、像素純度指數 、最小噪音轉換 、ASTER |
| 外文關鍵詞: | alieration minerals, N-dimensional visualization, Pixel purity index, minimum noise fraction, ASTER |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Terra衛星所酬載的ASTER感測器涵蓋廣泛的光譜範圍,從可見光到熱紅外線共有14個波段。藉由分析不同波段的影像,可以辨別和繪製地表的岩石種類和預測礦物的風化程度與組合。本研究利用ASTER影像對南蒙古戈壁南蒙古沙漠進行多光譜分析。該地區極度乾旱、幾乎無植被的地表,十分有利應用遙測技術於地表岩性判釋。將衛星影像進行幾合與輻射修正,以及光譜分析後,本研究提出該地區地表風化礦物的分類。光譜分類根據下列步驟進行:
a)以最小噪音分離轉換(MNF)降低光譜雜訊
b)以像素純度指數(PPI)分析降低像素數目
c)使用N維視覺化工具(N-dimentional visualizer)進行端元判定
此外,本研究亦結合遙測影像和地形圖,應用地理資訊系統技術,配合地質資料來檢測所繪製的風化礦物分佈圖。結果顯示在本研究區域中,應用MNF、PPI、n-D visualizer等分析方法於風化礦物的判釋確實可行。
The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) cover a wide spectral region with 14 bands from visible to the thermal infrared. The different band ranges can be capable discriminating and mapping surface rocks and predict minerals on alteration assemblages of potential targets. The aim of this work is a multispectral analysis of the area of interest using ASTER sensor image on board the satellite Terra. This research work presents classification of different minerals in Gobi (Southern Mongolia) desert and almost non-vegetated arid area. The Satellite imagery has been corrected geometrically and radiometrically. The spectral classification was done according to the following steps:
a) Spectral reduction by the Minimum Noise Fraction (MNF) transformation,
b) Spatial reduction by the Pixel Purity Index (PPI) and
c) Manual identification of the endmembers using the N-dimensional visualizer.
This research work was used remotely sensed imagery and topographical map, and Remote Sensing and GIS techniques to detect mineral alteration mapping. Ground truth data have been used for validation as a reference. The application of the sequence MNF, PPI and n-D visualizer in the study area showed possibility of the identification of different mineral and different rock types.
[1] Ninomiya,Y. 2002, Mapping quartz, carbonate minerals and mafia-ultramafic rocks using remotely sensed multispectral, thermal infrared ASTER data. Proceedings of SPIE, 4710, pp.191-202.
[2] Hunt G.R, Salisbury J.W, and Lenhoff C.J, 1972, Visible and near infrared spectra of minerals, Modern Geology, pp 3:121-132.
[3] Hunt G.R, 1977, Spectral signatures of particular minerals in the visible and near infrared, Geophysics, 42(3), pp.501-513.
[4] Boardman, J.W and Kruse, F.A, 1994, Automated spectral analysis: a geologic example using AVIRIS data, north Grapevine Mountains, Nevada, Proceedings of the Tenth Thematic Conference on Geologic Remote Sensing, pp.1407-1418.
[5] Fundamentals of Remote Sensing Introduction Source: www.ccrs.nrcan.gc.ca
[6] Wikipedia http://en.wikipedia.org/
[7] ERDAS Field Guide, 2008, Leica Geosystems.
[8] Kang-tsung Chang. 2006, Introduction to Geographic Information Systems, by published McGraw Hill, third edition.
[9] Gary L.Prost., 2001, Remote Sensing for Geologists; A Guide to Image Interpretation, by published Gordon and Breach Science Publishers, second edition.
[10] Hirano,A., H.Lang, R.Welch, and H.Lang, 2003, Mapping from ASTER stereo image data: DEM validation and accuracy assessment, ISPRS Journal of Photogrammetry & Remote Sensing, vol. 57, pp. 356-370.
[11] ASTER users handbook http://www.asterweb.jpl.nasa.gov
[12] ERSDAC, 2002, https://lpdaac.usgs.gov/
[13] http://geology.isu.edu/geostac/Field_Exercise/topomaps/topo_map.htm
[14] Bob Agar, 2001, ASTER Alteration Mineral Mapping; Las Pampas, Cajamarca, Peru for B&G Mining S.A.C
[15] Geometric correction http://www.sjsu.edu/
[16] Boardman J.W and Kruse F.A, 1994, Automated spectral analysis; Geologic example using AVIRIS data, north Grapevine Mountains, Nevada Thematic Conference on Geologic Remote Sensing, Environmental Research, Ann Arbor, MI, I: 407-418.
[17] Bachari.N, Khodja.S, Belbachir.A, Multispectral Analysis of Satellite Image, ISPRS Congress Istanbul 2004, Proceedings of Commission IV
[18] Boardman J.W, 1993, Automated spectral unmixing of AVIRIS data using convex geometry concepts, 4th JPL Airborne Geoscience Workshop, JPL publication 93-26, v.1 p.11-14
[19] Abrams J.M, 1983, Remote Sensing for porphyry copper deposit in southern Arizona, Economic Geology, 78, pp.591-604.
[20] Kalinowski.A, Oliver.S, 2004, ASTER mineral index processing manual, Geoscience Australia. http://www.ga.gov.au
[21] ITT ENVI tutorial.
[22] Mineral Alteration http://geology.about.com/od/glossaryofgeology/g/defalteration.htm
[23] Mineral Alteration http://www.pimausa.com/alt_syst.html
[24] Kruse, F.A., J.W. Boardman, A.B. Lefkoff, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon, and A.F.H. Goetz, 1993. The Spectral Image Processing System (SIPS): Interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment 44: 145-163.
[25] Edited by Andrew N. Rencz. 1999, Remote Sensing for Earth Sciences, published by John Wiley and Sons Inc, third edition, volume 3.
[26] James B. Campbell, 2002, Introduction to Remote Sensing, published by The Guilford Press, A Division of Guilford Publications, Inc.