| 研究生: |
宋狄謙 Di-Chian Sung |
|---|---|
| 論文名稱: |
GLn(C)的不可約表現建構方式之討論 On Some Constructions of Irreducible Representations of GLn(C) |
| 指導教授: |
蔡宛育
Wan-Yu Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 不可約表現 、Weyl模 、最高權重 |
| 外文關鍵詞: | Irreducible representations, Weyl modules, Highest weight |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章中,我們討論兩種GLn(C)有限維的不可約表現之建構方式: Weyl 模和Highest weight定理。結果我們發現,Weyl模並不涵蓋所有GLn(C)的有限維不可約表現,比如說,對偶表現無法透過Weyl模來建構。因此,我們將透過其他的建構方式,來明確地刻劃出所有GLn(C)的有限維不可約表現。
There are two constructions of irreducible finite-dimensional representations of GLn(C):
Weyl modules and Highest weight theory. It turns out that Weyl modules don’t give us all irreducible finite-dimensional representations of GLn(C). For example, dual representations are not included in Weyl modules. In this article, we explicitly describe all irreducible finite-dimensional representations of GLn(C) that don’t arise from Weyl modules.
[1] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. 1901.
[2] H. Weyl, The classical groups: their invariants and representations. Princeton university press, 1946.
[3] W. Fulton and J. Harris, Representation theory: a first course. Springer Science & Business Media, 2013, vol. 129.
[4] B. C. Hall and B. C. Hall, Lie groups, Lie algebras, and representations. Springer, 2013.
[5] B. E. Sagan, The symmetric group: representations, combinatorial algorithms, and symmetric functions. Springer Science & Business Media, 2013, vol. 203.
[6] J. E. Humphreys, Introduction to Lie algebras and representation theory. Springer Science & Business Media, 2012, vol. 9.
[7] A. A. Kirillov, An introduction to Lie groups and Lie algebras. Cambridge University Press, 2008, vol. 113.