跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃崑財
Kun-Tsai Huang
論文名稱: 嶄新表面電漿子感測元件
Novel Surface Plasmon Sensing Device
指導教授: 孫慶成
Ching-Cherng Sun
陳顯禎
Shean-Jen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 中文
論文頁數: 97
中文關鍵詞: 粒子電漿子共同濺鍍表面電漿子能量分散光譜穿透式電子顯微鏡衰逝全反射生物感測器
外文關鍵詞: particle plasmons, biosensor, ATR, TEM, EDS, surface plasmon, co-sputter
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿共振(surface plasmon resonance,SPR)生物感測器之運用在生物科技上已經愈來愈廣泛,但廣為使用之傳統SPR感測器其偵測極限只達1pg/mm2表面生物分子的覆蓋度,如何提高SPR感測器的偵測極限一直是相關研究學者所努力的目標。本論文主要以共濺鍍(co-sputter)的方式製作具有金奈米團簇( nanocluster)之二氧化矽複合膜層,藉由控制不同之鍍膜參數來比較不同金屬粒子分佈情形之混鍍膜層對於感測介質變化的靈敏度。利用等效介質理論(effective media theory)來模擬混鍍膜層於不同角度之強度反射光譜。量測方面主要以實驗室自行開發之衰逝全反射(attenuated total reflection,ATR)生醫感測儀來量測反射光強對應不同入射角度之曲線,並以氮氣和氬氣的SPR角差異量來分析感測器之靈敏度,另外,搭配穿透式電子顯微鏡(transmission electric microscopy,TEM)來觀測金屬粒子在混鍍膜層之分佈情況。並以能量分散光譜(energy dispersive spectroscopy,EDS)來量測試片所包含的元素以及半定量的分析。由於入射光激化混鍍膜層中之奈米團簇,產生粒子電漿子(particle plasmons,PPs),造成局域電磁波強化現象,對於感測層介質變化有靈敏度提高之效應。利用此試片對去氧核糖核酸之雜交反應分析,與傳統之SPR生醫感測器比較。相較於傳統之SPR晶片,本論文中所製作之混鍍膜層SPR感測器在氣體偵測上靈敏度提高至10倍以上。


    Surface plasmon resonance (SPR) biosensor has been widely used in biotechnology. Currently, the detection limit of traditional SPR biosensor is about 1pg/mm2. How to improve the detection limit of SPR biosensor is the most interesting issue for the researchers in the biosensor area. In the thesis, gold nano-clusters embedded in silica composite thin film is made to improve the detection limit by using a co-sputter deposition. We control the deposition parameters to get different particle sizes and volume fractions. The different SPR angle of helium and argon are detected by home-made attenuated total refraction (ATR) sensing instrument. The distribution of gold nanoclusters embedded in silica thin film, which is detected by transmission electric microscopy (TEM), results in the ATR spectra different from the one that is counted by effective media theory. Energy dispersive spectroscopy (EDS) is used to detect the characteristics of the composite thin film. When the gold nanoclusters embedded in silica thin film is illuminated by the incident light, the local electro-magnetic field will be enhanced through the excitation of the localized surface plasmons (LSPs), or so-called particle plasmons (PPs). This sample is also used to detect DNA hybridization. In contrast with traditional SPR sensor, the sensitivity of the SPR sensor with the composite thin film is achieved up to at least ten-fold in the gas detection.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 1 1-3 文獻回顧 3 1-4 論文架構 5 第二章 表面電漿子理論 6 2-1 表面電漿共振現象 6 2-1-2 雙層結構之反射率 16 2-1-3 金膜厚度有限之三層結構反射率及其色散關係式 17 2-1-4 四層結構之反射率及其色散關係式 22 2-2 Mie理論 27 2-2-1 任意粒子大小 27 2-2-2 準靜止限制 30 2-3 等效膜層理論 30 2-3-1 MG理論 31 2-3-2 Bruggeman理論 33 第三章 混合濺鍍與膜層量測 35 3-1 鍍膜相關理論簡介 35 3-1-1 平均自由徑 35 3-1-2 輝光放電 36 3-1-3 平面磁控射頻濺鍍系統 38 3-2 實驗之濺鍍系統 40 3-3 衰逝全反射生醫感測儀 43 3-4 穿透式電子顯微鏡 46 第四章 實驗結果與討論 47 4-1 基板清潔 47 4-2 試片鍍製 48 4-3 不同鍍膜參數ATR量測曲線比較 49 4-3-2 不同金含量 50 4-3-3 不同混鍍膜層厚度 53 4-3-4 不同金膜厚度 59 4-3-4-2 同樣鍍上Au(25W):SiO2(200W),100s 60 4-3-4-3 同樣鍍上Au(25W):SiO2(200W),150s 61 4-3-4-4 同樣鍍上Au(30W):SiO2(200W),100s 62 4-3-4-5 同樣鍍上Au(30W):SiO2(200W),150s 63 4-4 不同參數靈敏度之比較 64 4-5 TEM 圖 70 4-6 能量分散光譜儀 74 4-7 試片 81 4-8 穩定性之測試 82 4-9 去氧核醣核酸分子雜交反應試驗 82 第五章 結論 89 參考文獻 91

    [1] J. Homola and S.S. Yee, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3-15 (1999).
    [2] K.C. Grabar, R.G. Freeman, M.B. Hommer, amd M.J. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67, 735-743 (1995).
    [3] K.C. Grabar, K.R. Brown, C.D. Keating, S.J. Stranick, S.-L.Tang, and M.J. Natan, “Nanoscale characterization of gold colloid monolayers: a comparison of four techniques,” Anal Chem. 69, 471-477 (1997).
    [4] K.R. Brown and M.J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces,” Langmuir 14, 726-728 (1998).
    [5] K.R. Brown, L.A. Lyon, A.P. Fox, B.D. Reiss, and M.J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles. 3.controlled formation of conductive Au films,” Chem. Mater. 12, 314-323 (2000).
    [6] L.A. Lyon, D J. Peña, and M.J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103, 5826-5831 (1999).
    [7] L.A. Lyon, M.D. Musick, P.C. Smith, B.D. Reiss, D.J. Peña, and M.J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sensors and Actuators B 54, 118-124 (1999).
    [8] L.A. Lyon, M.D. Musick, and M.J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177-5183 (1998).
    [9] 簡汎清,超高解析度表面電漿共振生物感測器之研製,國立中央大學機械工程研究所碩士論文,6月(2003)。
    [10] M. Faraday, “Experimental relations of gold(and other metals) to light,” Phil. Trans. R. Soc. 147, 145-181 (1857).
    [11] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377 (1908).
    [12] J.C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385 (1904).
    [13] J.C. Maxwell-Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions—II,” Philos. Trans. R. Soc. London 205, 237 (1906).
    [14] R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
    [15] C.J. Powell and J.B. Swan, “Effect of oxidation on the characteristics loss spectra of aluminum and magnesium,” Phys Rev. 118, 640-643 (1960).
    [16] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators 4, 299-304 (1983).
    [17] C. Nylander, B. Liedberg, and T. lind, “Gas detection by means of surface plasmon resonance,” Sensor and Actuators 3, 79-88 (1982).
    [18] W. M. Merrill, R. E. Diaz, M. M. LoRe, M. C. Squires, and Nicolaos G. Alexopoulos, “Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum,” IEEE Transations on Antennas and Propagation 47, 142-148 (1999).
    [19] R. H. Magruder Ill, L. Yang, and R.F. Haglund, Jr., C.W. White, L. Yang, R. Dorsinville, and R.R. Alfano, ” Optical properties of gold nanocluster composites formed by deep ion implantation in silica,” Appl. Phys. Lett. 62, 1730 (1993).
    [20] Kohei Fukumi, Akiyoshi Chayahara, Kohei Kadono, Toru Sakaguchi, Yuji Horino, Masaru Miya, Kanenaga Fujii, Junji Hayakawa, and Mamoru Satou, ” Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 6, 3075-3080 (1994).
    [21] Z.X. Liu, H. Li, X.D. Feng, S.G. Ren, H.H. Wang, Z.H. Liu and B.F. Lu, ”Formation effects and optical absorption of Ag nanocrystals embeddedin single crystal SiO2 by implantation,” J. Appl. Phys. 84, 4,1913-1917 (1998).
    [22] J. Matsuoka R. Naruse, H. Nasu, K. Kamiya, “Preparation of gold microcrystal-doped oxide optical coatings through adsorption of tetrachloroaurate ions on gel films,” J. Non-cryst. Solids 218, 151-155 (1997).
    [23] D.G. Duff, A. Baiker, and P.P. Edwards, ’’A new hydrosol of gold clusters.1. Formation and particle size variation,” Langmuir 9, 2301 (1993).
    [24] I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki and A. Nakamura, ”Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 3,1244-1249 (1996).
    [25] H. B. Liao, R. F. Xiao, J. S. Fu, and G.K.L. Wong, ”Large third-order nonlinear optical susceptibility of Au−Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65, 673-676 (1997).
    [26] H.B. Liao, R.F. Xiao, J.S. Fu, P. Yu, G.K.L. Wong, and P. Sheng, ”Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1, 1-3 (1997).
    [27] S.H. Cho , S. Lee , D.Y. Ku , T.S. Lee , B. Cheong , W.M. Kim, and K.S. Lee, ”Growth behavior and optical properties of metal-nanoparticle dispersed dielectric thin films formed by alternating sputtering,” Thin Solid Films 68, 447–448 (2004).
    [28] W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, ”Optical dichroism of lithographically designed silver nanoparticle films,” Optics Lett. 21, 15, 1099-1101 (1996).
    [29] N. Félidj, J. Aubard, and G. Lévi J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, ”Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering.” Phys. Rev. B 65, 075419-075428 (2002)
    [30] C. Girard and A. Dereux, ”Near-field optics theories,” Rep. Prog. Phys. 59, 657-699 (1996).
    [31] S. Kawata, Near-Field Optics and Surface Plasmon Polaritons, Springer 2001.
    [32] J. Tominaga and D.P. Tsai, Optical Nanotechnologies-The Manipulation of Surface and Local Plasmons, Springer-Verlag, 2003.
    [33] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988.
    [34] D.R. Tilley, K. Welford, J.R. Sambles, A.D. Boardman, T. Twardowski, and R.A. Innes, Surface Plasmon-Polaritations, IOP Publishing Ltd, 1987.
    [35] 朱志昇,光波導耦合表面電將子光電調變器,國立中央大學機械工程研究所碩士論文,6月(2003)。
    [36] T. Okamoto, “Near-Field spectral analysis of metallic beads,” Appl. Phys. 81, 97-122 (2001).
    [37] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, New York, 1996.
    [38] V. D. A. G. Bruggeman, “Betechnung vershiedener physikalischer konstanten von heterogenen substanzen,” Annalen der Physik 24, 5, 636–664 (1935).
    [39] R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical Properties of Granular Silver and Gold Films,” Phys. Rev. B 8, 3689–3701 (1973).
    [40] R. F. Bunshan, Handbook of Deposition Technologies for Film and Coatings, 2nd ed , Noyes Publications, 1994.
    [41] J. L. Vossen and W. Kern, Thin Film Processes II, Boston: Academic Press, 1991.
    [42] K. Wasa, and S. Hayakawa, Hand Book of Sputter Deposition Technology, 2nd ed, Noyes Publications, 1992.
    [43] 李正中,薄膜光學與鍍膜技術,第二版,藝軒圖書出版社,2001。
    [44] 泉谷徹郎著,高正雄譯,光學玻璃,復漢出版社,1996。
    [45] K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, ”Growth, morphology, and optical and electrical properties of semicontinuous metallic films, ”Phys. Rev B 67, 035318-035331 (2003).
    [46] A.V Zayats and Igor I Smolyaninov, ”Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure. Appl. Opt. 5, S16-S50 (2003).
    [47] R. Doremus, “Optical absorption of island film of nobel metals: wave length of the plasma absorption band,” thin solid film 326, 205-210 (1998).

    QR CODE
    :::