跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴政秀
Jheng-Siou Lai
論文名稱: 探討化合物 Y 抑制神經母細胞瘤增生之效果
Investigating the Proliferation-Inhibiting Effects of Compound Y on Neuroblastoma
指導教授: 吳沛翊
Pei-Yi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 58
中文關鍵詞: 神經母細胞瘤芳香烴接受器
外文關鍵詞: Neuroblastoma, AHR
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經母細胞瘤是兒童常見的顱外實體瘤,起源於交感神經系統,好發於腹腔之神經節及腎上腺。經過幾十年來的研究,即使採用最先進的治療方法,高危族群的神經母細胞瘤患者的生存率仍舊低於50%。這顯示現有藥物不足以有效治愈患者,因此,開發治療神經母細胞瘤的新藥是迫切需要的。根據我們的先前研究發現芳香烴接受器(AHR)的表達與神經母細胞瘤的分化程度呈高度正相關。當AHR被大量表達時可以抑制神經母細胞瘤細胞增殖並促進其分化。此外,AHR受到配體激活時,亦可達到與大量表達AHR的相似治療效果,顯示AHR配體具有開發成神經母細胞瘤治療藥物之潛力。因此,在本研究中我想研究AHR的新型配體 compound Y是否對NB具有增殖抑製的作用。研究結果發現,以 compound Y處理SK-N-BE 以及 SK-N-SH神經母細胞瘤細胞後,透過細胞計數實驗可以觀察到細胞數在高濃度compound Y處理的組別顯著降低。透過MTS分析的結果也呈現相似的結果,compound Y有效降低細胞活性,顯示細胞增殖受到抑制。除此之外,於細胞聚落生成實驗中也可以觀察到高濃度 compound Y 會使細胞聚落生成降低。透過細胞週期分析亦發現compound Y促使細胞停滯在G0/G1期的比例上升。另一方面,由於先前研究指出,AHR訊息路徑的活化有助於神經母細胞瘤之分化,此研究也藉由觀察細胞分化型態的改變以及分化標誌TUJ1、NSE及NF-H的mRNA表現來確定compound Y 的促分化能力。最後,透過 Annexin V-FITC染色初步證實compound Y也具有促進神經母細胞瘤細胞凋亡之特性。總結來說,本研究利用多種研究方式證實了AHR的新型配體 compound Y確實具有抑制神經母細胞瘤生長之功效。


    Neuroblastoma (NB) is the most common extracranial solid tumor in children, which originates from the sympathetic nervous system and is more likely to occur in the ganglion of the abdominal cavity and the adrenal gland. After decades of investigation, the survival rate of high-risk NB patients is still less than 50%, even with advanced therapies. This indicates that existing drugs are not effective enough to cure patients, therefore, the development of new drugs to treat NB is urgently needed. Our previous study found that the expression of aryl hydrocarbon receptor (AHR) was positively correlated with the differentiation histology of NB tumors. AHR overexpression can inhibit the proliferation of NB cells by promoting their differentiation. In addition, AHR activation by a ligand can also achieve a similar therapeutic effect to that of AHR overexpression, indicating that AHR ligands have therapeutic potential for NB. Therefore, in this study, I would like to investigate whether compound Y, a novel ligand of AHR, has a proliferation-inhibiting effect on NB. To this end, SK-N-BE and SK-N-SH NB cells were treated with compound Y. By the cell counting experiments, I found that the number of cells in the group treated with high concentrations of compound Y was significantly reduced. The results of MTS analysis also showed similar results, compound Y effectively reduced cell viability, showing that cell proliferation was inhibited. In addition, in the colony formation assay, it can also be observed that a high concentration of compound Y reduced the cell colony formation. Cell cycle analysis also found that compound Y induces cell arrest in G0/G1 phase. On the other hand, since previous studies have pointed out that the activation of AHR signaling pathways contributes to NB's differentiation, compound Y's effects in promoting cell differentiation were observed in this study. By observing the morphology change and the mRNA expression of differentiation markers TUJ1, NSE, and NF-H, I suggest that compound Y has the ability to induce differentiation of NB cells. Lastly, through Annexin V-FITC staining, it was preliminarily confirmed that compound Y also has the property of promoting apoptosis of NB cells. In conclusion, this study has confirmed that compound Y inhibits the proliferation of NB by using various research methods.

    第⼀章、緒論 p.1 1-1 兒童癌症 p.1 1-1-1 成因與特色 p.2 1-1-2 治療 p.3 1-2 神經⺟細胞瘤 p.4 1-2-1 患者統計 p.4 1-2-2 診斷方法 p.5 1-2-3 腫瘤分布與病況 p.5 1-2-4 臨床表現與分期判定 p.6 1-2-5 ⾵險與⽣物學上的特異性 p.7 1-3 MYCN 與神經母細胞瘤 p.8 1-3-1 在神經母細胞瘤中的調節 p.8 1-3-2 MYCN對細胞增殖與細胞週期的影響 p.9 1-3-3 MYCN對細胞凋亡的影響 p.10 1-4 芳香烴接受器 p.11 1-4-1 AHR的作用機制 p.11 1-4-2 配體激活AHR可促進細胞增殖 p.12 1-4-3 配體激活AHR可抑制細胞增殖 p.12 1-4-4 藥物開發-AHR內源性配體 p.13 1-5 3α.5α-四氫皮質酮(5α-THB)和3α.5β-四氫皮質酮(5β-THB) p.14 1-5-1 5α-THB的抗炎功能 p.15 1-5-2 5α-和5β-THB在神經細胞的功能 p.15 1-5-3 5α-THB和5β-THB的異構物compound Y p.17 1-6 研究動機和⽬標 p.18 第二章、材料與方法 p.19 2-1 細胞培養 p.19 2-2 藥劑和試劑配置 p.19 2-3 西方墨點法 p.19 2-4 細胞計數 p.20 2-5 MTS分析 p.20 2-6 流式細胞儀分析 p.21 2-6-1 Cell cycle分析檢測細胞增生 p.21 2-6-2 Annexin V-FITC染⾊檢測細胞凋亡 P.21 2-7 RNA反轉錄成cDNA p.21 2-8 即時聚合酶連鎖反應(SYBR Green Real-Time PCR) p.22 2-9 細胞群落形成分析 p.22 第三章、實驗結果 p.24 3-1 Compound 在神經⺟細胞瘤中對細胞增生的影響 p.24 3-1-2 神經⺟細胞腫瘤細胞處理Compound Y細胞代謝活性被抑制 p.25 3-1-3 神經⺟細胞瘤細胞處理Compound Y後細胞群落⽣成被抑制 P.26 3-1-4 神經⺟細胞瘤細胞處理Compound Y後細胞停留在G0/G1期 p.27 3-2 Compound Y在神經⺟細胞瘤中對細胞分化的影響 P.27 3-3 Compound Y在神經⺟細胞瘤中對細胞凋亡的影響 p.28 第四章、討論 p.30 第五章、參考⽂獻 p.41

    1. Grimmer, M.R. and W.A. Weiss, Childhood tumors of the nervous system as
    disorders of normal development. Current Opinion in Pediatrics, 2006. 18(6): p.
    634-638.
    2. Scotting, P.J., D.A. Walker, and G. Perilongo, Childhood solid tumours: a
    developmental disorder. Nat Rev Cancer, 2005. 5(6): p. 481-8.
    3. Park, J.R., A. Eggert, and H. Caron, Neuroblastoma: Biology, Prognosis, and
    Treatment. Hematology/Oncology Clinics of North America, 2010. 24(1): p. 65-
    86.
    4. Pritchard-Jones, K., et al., Cancer in children and adolescents in Europe:
    developments over 20 years and future challenges. Eur J Cancer, 2006. 42(13):
    p. 2183-90.
    5. Deaths : leading causes for 2013, S. National Center for Health, Editor. 2016:
    Hyattsville, MD.
    6. Johnsen, J.I., et al., Embryonal neural tumours and cell death. Apoptosis, 2009.
    14(4): p. 424-438.
    7. Vassal, G., Has chemotherapy reached its limits in pediatric cancers? Eur J
    Cancer, 2005. 41(4): p. 564-75; discussion 576-7.
    8. Brodeur, G.M., Neuroblastoma: biological insights into a clinical enigma. Nature
    Reviews Cancer, 2003. 3(3): p. 203-216.
    9. Johnsen, J.I., C. Dyberg, and M. Wickström, Neuroblastoma—A Neural Crest
    Derived Embryonal Malignancy. Frontiers in Molecular Neuroscience, 2019. 12.
    10. Chesler, L., et al., Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn
    protein and blocks malignant progression in neuroblastoma. Cancer Res, 2006.
    66(16): p. 8139-46.
    11. de Bernardi, B., et al., Localized neuroblastoma. Surgical and pathologic
    staging. Cancer, 1987. 60(5): p. 1066-72.
    12. Haas-Kogan, D.A., et al., Impact of radiotherapy for high-risk neuroblastoma: a
    Children's Cancer Group study. Int J Radiat Oncol Biol Phys, 2003. 56(1): p. 28-
    39.
    13. Evans, A.E., et al., A review of 17 IV-S neuroblastoma patients at the children's
    hospital of philadelphia. Cancer, 1980. 45(5): p. 833-9.
    14. Maris, J.M., et al., Neuroblastoma. Lancet, 2007. 369(9579): p. 2106-20.
    15. Matthay, K.K., R.E. George, and A.L. Yu, Promising therapeutic targets in
    neuroblastoma. Clin Cancer Res, 2012. 18(10): p. 2740-53.
    16. Mueller, S. and K.K. Matthay, Neuroblastoma: biology and staging. Curr Oncol
    Rep, 2009. 11(6): p. 431-8.
    17. Brodeur, G.M., et al., Amplification of N-myc in untreated human
    neuroblastomas correlates with advanced disease stage. Science, 1984.
    224(4653): p. 1121-4.
    18. Seeger, R.C., et al., Association of multiple copies of the N-myc oncogene with
    rapid progression of neuroblastomas. N Engl J Med, 1985. 313(18): p. 1111-6.
    19. Thiele, C.J., C.P. Reynolds, and M.A. Israel, Decreased expression of N-myc
    precedes retinoic acid-induced morphological differentiation of human
    neuroblastoma. Nature, 1985. 313(6001): p. 404-6.
    20. Kohl, N.E., et al., Human N-myc is closely related in organization and nucleotide
    sequence to c-myc. Nature, 1986. 319(6048): p. 73-7.
    21. Stanton, B.R., et al., Loss of N-myc function results in embryonic lethality and
    failure of the epithelial component of the embryo to develop. Genes &
    development, 1992. 6(12a): p. 2235-2247.
    22. Breit, S. and M. Schwab, Suppression of MYC by high expression of NMYC in
    human neuroblastoma cells. J Neurosci Res, 1989. 24(1): p. 21-8.
    23. Matsumoto, M., et al., Expression of proto-oncogene products during druginduced differentiation of a neuroblastoma cell line SK-N-DZ. Acta Neuropathol,
    1989. 79(2): p. 217-21.
    24. Cinatl, J., et al., In vitro differentiation of human neuroblastoma cells induced by
    sodium phenylacetate. Cancer Lett, 1993. 70(1-2): p. 15-24.
    25. Han, S., R.K. Wada, and N. Sidell, Differentiation of human neuroblastoma by
    phenylacetate is mediated by peroxisome proliferator-activated receptor
    gamma. Cancer Res, 2001. 61(10): p. 3998-4002.
    26. Reddy, C.D., et al., Anticancer effects of the novel 1alpha, 25-dihydroxyvitamin
    D3 hybrid analog QW1624F2-2 in human neuroblastoma. J Cell Biochem, 2006.
    97(1): p. 198-206.
    27. Weiss, W.A., et al., Targeted expression of MYCN causes neuroblastoma in
    transgenic mice. Embo j, 1997. 16(11): p. 2985-95.
    28. Huang, M. and W.A. Weiss, Neuroblastoma and MYCN. Cold Spring Harb
    Perspect Med, 2013. 3(10): p. a014415.
    29. Tweddle, D.A., et al., p53 cellular localization and function in neuroblastoma:
    evidence for defective G(1) arrest despite WAF1 induction in MYCN-amplified
    cells. Am J Pathol, 2001. 158(6): p. 2067-77.
    30. Bell, E., J. Lunec, and D.A. Tweddle, Cell cycle regulation targets of MYCN
    identified by gene expression microarrays. Cell Cycle, 2007. 6(10): p. 1249-56.
    31. Muth, D., et al., Transcriptional repression of SKP2 is impaired in MYCNamplified neuroblastoma. Cancer Res, 2010. 70(9): p. 3791-802
    32. Gogolin, S., et al., CDK4 inhibition restores G(1)-S arrest in MYCN-amplified
    neuroblastoma cells in the context of doxorubicin-induced DNA damage. Cell
    Cycle, 2013. 12(7): p. 1091-104.
    33. Cole, K.A., et al., RNAi screen of the protein kinome identifies checkpoint kinase
    1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci U S A,
    2011. 108(8): p. 3336-41.
    34. Valli, E., et al., CDKL5, a novel MYCN-repressed gene, blocks cell cycle and
    promotes differentiation of neuronal cells. Biochim Biophys Acta, 2012.
    1819(11-12): p. 1173-85.
    35. Koppen, A., et al., Dickkopf-1 is down-regulated by MYCN and inhibits
    neuroblastoma cell proliferation. Cancer Lett, 2007. 256(2): p. 218-28.
    36. Iavarone, A., et al., The helix-loop-helix protein Id-2 enhances cell proliferation
    and binds to the retinoblastoma protein. Genes Dev, 1994. 8(11): p. 1270-84.
    37. Lasorella, A., A. Iavarone, and M.A. Israel, Id2 specifically alters regulation of the
    cell cycle by tumor suppressor proteins. Mol Cell Biol, 1996. 16(6): p. 2570-8.
    38. Blaschke, A.J., J.A. Weiner, and J. Chun, Programmed cell death is a universal
    feature of embryonic and postnatal neuroproliferative regions throughout the
    central nervous system. J Comp Neurol, 1998. 396(1): p. 39-50.
    39. De Zio, D., et al., Expanding roles of programmed cell death in mammalian
    neurodevelopment. Semin Cell Dev Biol, 2005. 16(2): p. 281-94.
    40. Evan, G.I., et al., Induction of apoptosis in fibroblasts by c-myc protein. Cell,
    1992. 69(1): p. 119-28.
    41. Fulda, S., et al., MycN sensitizes neuroblastoma cells for drug-triggered
    apoptosis. Med Pediatr Oncol, 2000. 35(6): p. 582-4.
    42. Strasser, A., et al., Novel primitive lymphoid tumours induced in transgenic mice
    by cooperation between myc and bcl-2. Nature, 1990. 348(6299): p. 331-3.
    43. Elson, A., et al., The MMTV/c-myc transgene and p53 null alleles collaborate to
    induce T-cell lymphomas, but not mammary carcinomas in transgenic mice.
    Oncogene, 1995. 11(1): p. 181-190.
    44. Chesler, L., et al., Chemotherapy-induced apoptosis in a transgenic model of
    neuroblastoma proceeds through p53 induction. Neoplasia, 2008. 10(11): p.
    1268-74.
    45. Valsesia-Wittmann, S., et al., Oncogenic cooperation between H-Twist and NMyc overrides failsafe programs in cancer cells. Cancer Cell, 2004. 6(6): p. 625-
    30.
    46. Slack, A., et al., The p53 regulatory gene MDM2 is a direct transcriptional target
    of MYCN in neuroblastoma. Proc Natl Acad Sci U S A, 2005. 102(3): p. 731-6.
    47. Kim, S.S., et al., CUL7 is a novel antiapoptotic oncogene. Cancer Res, 2007.
    67(20): p. 9616-22.
    48. Swarbrick, A., et al., miR-380-5p represses p53 to control cellular survival and is
    associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med,
    2010. 16(10): p. 1134-40.
    49. Huang, R., et al., MYCN and MYC regulate tumor proliferation and
    tumorigenesis directly through BMI1 in human neuroblastomas. Faseb j, 2011.
    25(12): p. 4138-49.
    50. Wu, P.-Y., et al., Aryl hydrocarbon receptor downregulates MYCN expression and
    promotes cell differentiation of neuroblastoma. PloS one, 2014. 9(2): p. e88795.
    51. Kewley, R.J., M.L. Whitelaw, and A. Chapman-Smith, The mammalian basic
    helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol,
    2004. 36(2): p. 189-204.
    52. Crews, S.T., Control of cell lineage-specific development and transcription by
    bHLH-PAS proteins. Genes Dev, 1998. 12(5): p. 607-20.
    53. Gonzalez, F.J. and P. Fernandez-Salguero, The aryl hydrocarbon receptor: studies
    using the AHR-null mice. Drug Metab Dispos, 1998. 26(12): p. 1194-8.
    54. Whitlock, J.P., Jr., Induction of cytochrome P4501A1. Annu Rev Pharmacol
    Toxicol, 1999. 39: p. 103-25.
    55. Davarinos, N.A. and R.S. Pollenz, Aryl Hydrocarbon Receptor Imported into the
    Nucleus following Ligand Binding Is Rapidly Degraded via the Cytosplasmic
    Proteasome following Nuclear Export *. Journal of Biological Chemistry, 1999.
    274(40): p. 28708-28715.
    56. Ma, Q. and K.T. Baldwin, 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced
    degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome
    pathway. Role of the transcription activaton and DNA binding of AhR. J Biol
    Chem, 2000. 275(12): p. 8432-8.
    57. Santiago-Josefat, B. and P.M. Fernandez-Salguero, Proteasome inhibition
    induces nuclear translocation of the dioxin receptor through an Sp1 and protein
    kinase C-dependent pathway. J Mol Biol, 2003. 333(2): p. 249-60.
    58. Barouki, R., X. Coumoul, and P.M. Fernandez-Salguero, The aryl hydrocarbon
    receptor, more than a xenobiotic-interacting protein. FEBS Lett, 2007. 581(19):
    p. 3608-15.
    59. Kim, D.W., et al., The RelA NF-κB subunit and the aryl hydrocarbon receptor
    (AhR) cooperate to transactivate the c-myc promoter in mammary cells.
    Oncogene, 2000. 19(48): p. 5498-5506
    60. Shimba, S., et al., Overexpression of the Aryl Hydrocarbon Receptor (AhR)
    Accelerates the Cell Proliferation of A549 Cells1. The Journal of Biochemistry,
    2002. 132(5): p. 795-802.
    61. Moennikes, O., et al., A Constitutively Active Dioxin/Aryl Hydrocarbon Receptor
    Promotes Hepatocarcinogenesis in Mice. Cancer Research, 2004. 64(14): p.
    4707-4710.
    62. Andersson, P., et al., A constitutively active dioxin/aryl hydrocarbon receptor
    induces stomach tumors. Proceedings of the National Academy of Sciences,
    2002. 99(15): p. 9990-9995.
    63. Kolluri, S.K., et al., p27(Kip1) induction and inhibition of proliferation by the
    intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev,
    1999. 13(13): p. 1742-53.
    64. Puga, A., et al., Aromatic Hydrocarbon Receptor Interaction with the
    Retinoblastoma Protein Potentiates Repression of E2F-dependent Transcription
    and Cell Cycle Arrest*. Journal of Biological Chemistry, 2000. 275(4): p. 2943-
    2950.
    65. Marlowe, J.L., et al., The Aryl Hydrocarbon Receptor Displaces p300 from E2Fdependent Promoters and Represses S Phase-specific Gene Expression*. Journal
    of Biological Chemistry, 2004. 279(28): p. 29013-29022.
    66. Marlowe, J.L., et al., The aryl hydrocarbon receptor binds to E2F1 and inhibits
    E2F1-induced apoptosis. Mol Biol Cell, 2008. 19(8): p. 3263-71.
    67. Marlowe, J.L., et al., The aryl hydrocarbon receptor displaces p300 from E2Fdependent promoters and represses S phase-specific gene expression. J Biol
    Chem, 2004. 279(28): p. 29013-22.
    68. Puga, A., et al., Aromatic hydrocarbon receptor interaction with the
    retinoblastoma protein potentiates repression of E2F-dependent transcription
    and cell cycle arrest. J Biol Chem, 2000. 275(4): p. 2943-50.
    69. Watabe, Y., et al., Aryl hydrocarbon receptor functions as a potent coactivator of
    E2F1-dependent trascription activity. Biol Pharm Bull, 2010. 33(3): p. 389-97.
    70. Akahoshi, E., S. Yoshimura, and M. Ishihara-Sugano, Over-expression of AhR
    (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells:
    neurotoxicology study. Environ Health, 2006. 5: p. 24.
    71. Wan, C., et al., 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature
    senescence in human and rodent neuronal cells via ROS-dependent
    mechanisms. PLoS One, 2014. 9(2): p. e89811.
    72. Qin, H. and J.A. Powell-Coffman, The Caenorhabditis elegans aryl hydrocarbon
    receptor, AHR-1, regulates neuronal development. Dev Biol, 2004. 270(1): p. 64-
    75
    73. Feng, S., Z. Cao, and X. Wang, Role of aryl hydrocarbon receptor in cancer.
    Biochim Biophys Acta, 2013. 1836(2): p. 197-210.
    74. Wu, P.-Y., et al., Novel Endogenous Ligands of Aryl Hydrocarbon Receptor
    Mediate Neural Development and Differentiation of Neuroblastoma. ACS
    Chemical Neuroscience, 2019. 10(9): p. 4031-4042.
    75. McInnes, K.J., et al., 5α-Reduced Glucocorticoids, Novel Endogenous Activators
    of the Glucocorticoid Receptor*. Journal of Biological Chemistry, 2004. 279(22):
    p. 22908-22912.
    76. McInnes, K.J., et al., 5alpha-reduced glucocorticoids, novel endogenous
    activators of the glucocorticoid receptor. J Biol Chem, 2004. 279(22): p. 22908-
    12.
    77. Penning, T.M., Molecular determinants of steroid recognition and catalysis in
    aldo-keto reductases. Lessons from 3alpha-hydroxysteroid dehydrogenase. J
    Steroid Biochem Mol Biol, 1999. 69(1-6): p. 211-25.
    78. Gastaldello, A., et al., Safer topical treatment for inflammation using 5αtetrahydrocorticosterone in mouse models. Biochemical Pharmacology, 2017.
    129: p. 73-84.
    79. Yang, C., et al., 5α-Reduced glucocorticoids exhibit dissociated antiinflammatory and metabolic effects. British Journal of Pharmacology, 2011.
    164(6): p. 1661-1671.
    80. McSweeney, S.J., et al., Improved heart function follows enhanced inflammatory
    cell recruitment and angiogenesis in 11βHSD1-deficient mice post-MI.
    Cardiovascular Research, 2010. 88(1): p. 159-167.
    81. Morgan, R., et al., Species-specific regulation of angiogenesis by glucocorticoids
    reveals contrasting effects on inflammatory and angiogenic pathways. PLOS
    ONE, 2018. 13(2): p. e0192746.
    82. Garcia-Segura, L.M. and R.C. Melcangi, Steroids and glial cell function. Glia,
    2006. 54(6): p. 485-98.
    83. Alonso, G., Prolonged corticosterone treatment of adult rats inhibits the
    proliferation of oligodendrocyte progenitors present throughout white and gray
    matter regions of the brain. Glia, 2000. 31(3): p. 219-31.
    84. Ganter, S., et al., Growth control of cultured microglia. J Neurosci Res, 1992.
    33(2): p. 218-30.
    85. Vardimon, L., et al., Glucocorticoid control of glial gene expression. J Neurobiol,
    1999. 40(4): p. 513-27.
    86. Hardin-Pouzet, H., et al., Glucocorticoid upregulation of glutamate
    dehydrogenase gene expression in vitro in astrocytes. Brain Res Mol Brain Res,
    1996. 37(1-2): p. 324-8.
    87. Barbaccia, M.L., et al., Stress and neuroactive steroids. Int Rev Neurobiol, 2001.
    46: p. 243-72.
    88. Belelli, D., et al., Neuroactive steroids and inhibitory neurotransmission:
    mechanisms of action and physiological relevance. Neuroscience, 2006. 138(3):
    p. 821-9.
    89. Belelli, D. and J.J. Lambert, Neurosteroids: endogenous regulators of the
    GABA(A) receptor. Nat Rev Neurosci, 2005. 6(7): p. 565-75.
    90. Engel, S.R. and K.A. Grant, Neurosteroids and behavior. Int Rev Neurobiol, 2001.
    46: p. 321-48.
    91. Lambert, J.J., et al., Neurosteroid modulation of recombinant and synaptic
    GABAA receptors. Int Rev Neurobiol, 2001. 46: p. 177-205.
    92. Patte-Mensah, C., C. Kibaly, and A.G. Mensah-Nyagan, Substance P inhibits
    progesterone conversion to neuroactive metabolites in spinal sensory circuit: a
    potential component of nociception. Proc Natl Acad Sci U S A, 2005. 102(25): p.
    9044-9.
    93. Vallée, M., W. Mayo, and M. Le Moal, Role of pregnenolone,
    dehydroepiandrosterone and their sulfate esters on learning and memory in
    cognitive aging. Brain Res Brain Res Rev, 2001. 37(1-3): p. 301-12.
    94. Ploessl, C., et al., Dinutuximab: An Anti-GD2 Monoclonal Antibody for High-Risk
    Neuroblastoma. Ann Pharmacother, 2016. 50(5): p. 416-22.
    95. Weidner, N., et al., Tumor Angiogenesis and Metastasis — Correlation in
    Invasive Breast Carcinoma. New England Journal of Medicine, 1991. 324(1): p.
    1-8.
    96. Brawer, M.K., Quantitative microvessel density: A staging and prognostic
    marker for human prostatic carcinoma. Cancer, 1996. 78(2): p. 345-349.
    97. Yamazaki, K., et al., Tumor angiogenesis in human lung adenocarcinoma.
    Cancer, 1994. 74(8): p. 2245-2250.
    98. Angeletti, C.A., et al., Prognostic significance of tumoral angiogenesis in
    completely resected late stage lung carcinoma (Stage IIIA-N2): Impact of
    adjuvant therapies in a subset of patients at high risk of recurrence. Cancer,
    1996. 78(3): p. 409-415.
    99. Maeda, K., et al., Tumor angiogenesis as a predictor of recurrence in gastric
    carcinoma. Journal of Clinical Oncology, 1995. 13(2): p. 477-481.
    100. Wiggins, D.L., et al., Tumor Angiogenesis as a Prognostic Factor in Cervical
    Carcinoma. Gynecologic Oncology, 1995. 56(3): p. 353-356.
    101. Hollingsworth, H.C., et al., Tumor angiogenesis in advanced stage ovarian
    carcinoma. Am J Pathol, 1995. 147(1): p. 33-41
    102. Gasparini, G., et al., Intratumoral microvessel density and L53 protein:
    Correlation with metastasis in head-and-neck squamous-cell carcinoma.
    International Journal of Cancer, 1993. 55(5): p. 739-744.
    103. Tapper, D., et al., Angiogenesis capacity as a diagnostic marker for human eye
    tumors. Surgery, 1979. 86(1): p. 36-40.
    104. Chodak, G.W., C.J. Scheiner, and B.R. Zetter, Urine from patients with
    transitional-cell carcinoma stimulates migration of capillary endothelial cells. N
    Engl J Med, 1981. 305(15): p. 869-74.
    105. Chodak, G.W., et al., Increased levels of fibroblast growth factor-like activity in
    urine from patients with bladder or kidney cancer. Cancer Res, 1988. 48(8): p.
    2083-8.
    106. Nguyen, M., et al., Elevated levels of an angiogenic peptide, basic fibroblast
    growth factor, in the urine of patients with a wide spectrum of cancers. J Natl
    Cancer Inst, 1994. 86(5): p. 356-61.
    107. Yeo, K.T., et al., Vascular permeability factor (vascular endothelial growth factor)
    in guinea pig and human tumor and inflammatory effusions. Cancer Res, 1993.
    53(12): p. 2912-8.
    108. Nanus, D.M., et al., Expression of basic fibroblast growth factor in primary
    human renal tumors: correlation with poor survival. J Natl Cancer Inst, 1993.
    85(19): p. 1597-9.
    109. Toi, M., et al., Association of vascular endothelial growth factor expression with
    tumor angiogenesis and with early relapse in primary breast cancer. Jpn J
    Cancer Res, 1994. 85(10): p. 1045-9.
    110. Relf, M., et al., Expression of the angiogenic factors vascular endothelial cell
    growth factor, acidic and basic fibroblast growth factor, tumor growth factor
    beta-1, platelet-derived endothelial cell growth factor, placenta growth factor,
    and pleiotrophin in human primary breast cancer and its relation to
    angiogenesis. Cancer Res, 1997. 57(5): p. 963-9.
    111. Ambellan, E., M. Swanson, and A. Davidson, Glucocorticoid binding to rat liver
    microsomal fractions in vitro. J Steroid Biochem, 1981. 14(5): p. 421-8.
    112. Roszak, A.W., et al., Structural requirements for the binding of dexamethasone
    to nuclear envelopes and plasma membranes. J Steroid Biochem Mol Biol, 1990.
    37(2): p. 201-14.
    113. Cascón, A., et al., Molecular characterisation of a common SDHB deletion in
    paraganglioma patients. J Med Genet, 2008. 45(4): p. 233-8.
    114. Marimpietri, D., et al., Proteome profiling of neuroblastoma-derived exosomes
    reveal the expression of proteins potentially involved in tumor progression. PLoS
    One, 2013. 8(9): p. e75054
    115. Meehan, B., J. Rak, and D. Di Vizio, Oncosomes - large and small: what are they,
    where they came from? J Extracell Vesicles, 2016. 5: p. 33109.
    116. Al-Nedawi, K., et al., Intercellular transfer of the oncogenic receptor EGFRvIII by
    microvesicles derived from tumour cells. Nat Cell Biol, 2008. 10(5): p. 619-24.
    117. Minciacchi, V.R., et al., MYC Mediates Large Oncosome-Induced Fibroblast
    Reprogramming in Prostate Cancer. Cancer Res, 2017. 77(9): p. 2306-2317.
    118. Haug, B.H., et al., Exosome-like Extracellular Vesicles from MYCN-amplified
    Neuroblastoma Cells Contain Oncogenic miRNAs. Anticancer Res, 2015. 35(5): p.
    2521-30.
    119. Ma, J., et al., Exosomal hsa-miR199a-3p Promotes Proliferation and Migration
    in Neuroblastoma. Front Oncol, 2019. 9: p. 459.
    120. Challagundla, K.B., et al., Exosome-mediated transfer of microRNAs within the
    tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl
    Cancer Inst, 2015. 107(7).

    QR CODE
    :::