| 研究生: |
吳坤齡 Kun-Ling Wu |
|---|---|
| 論文名稱: |
界面活性劑與電泳輔助放電加工之研究 A Study of Electrical Discharge Machining Aided by Surfactant and Electrophoresis |
| 指導教授: |
顏炳華
Biing-Hwa Yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 放電加工 、表面粗糙度 、材料移除量 、電泳沉積 、鏡面 |
| 外文關鍵詞: | material removal, surfactant, electrophoretic deposition, mirror-like surface, surface roughness, EDM |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
放電加工是利用電能轉變成熱能產生高溫達到去除材料的目的,適用於高硬度、高強度等難切削之材料加工。由於放電過程中工件表面受到急冷急熱的作用,容易產生微裂縫、微氣孔等缺陷,使得加工面的品質變差;對機件使用壽命上造成嚴重的影響。因此如何精修放電表面,提升加工品質是本論文所要探討的主題。
本研究針對放電加工後表面粗糙度不佳的缺點,提出了三種改善表面品質的方法,分別為加工液中添加界面活性劑、放電面噴塗介電材料及結合電泳拋光技術對放電加工表面進行精修,達到精緻表面的目的。經由實驗結果分析顯示,純煤油中添加Span 20 界面活性劑,藉由界面活性分子的作用,達到分散碳渣、加工屑的效果,減少積碳、放電集中現象,對材料去除率可提升40~85%;純煤油中添加鋁粉與非離子界面活性劑Tween 80,改善了鋁粉集聚現象,使其更均勻地分散於放電加工液中,對放電後的工件表面粗糙度可改善60%;另一種方法為放電面上噴塗介電材料,以其薄膜厚度來影響放電痕高低點之電阻抗,消耗部份的放電能量,使得放電痕之隆起處逐一被去除,留下深淺均一的凹坑,因此加工後工件表面粗糙度改善率可以提升33%,表面粗度值穩定性可以增加18%;而採用電泳沉積方法可使粒徑0.3µm的Al2O3顆粒均勻吸附於旋轉電極,配合適當參數對放電後之工件進行精密拋光,可在5~10 min將初始粗糙度0.52 µmRa的放電表面改善到0.068 µmRa 似如鏡面的效果,對縮短加工時間與改善表面粗糙度效果相當明顯。
In electrical discharge machining (EDM), materials are removed by thermal energy transformed from electrical energy. This technique can be applied to remove materials with high hardness and strength, which are difficult to machine by traditional methods. During the process, the workpiece is subject to rapid heating and cooling under a violent temperature gradient. As a result, defects such as microcracks and pores are formed, to deteriorate the surface quality and shorten the life cycle. In view of such drawbacks, this study aims to enhance the high precision quality of electrical discharge machined surface.
Three approaches to improve the surface roughness and to achieve a mirror-like surface quality are proposed. Three techniques including the addition of surfactant to dielectric, the spraying of dielectric material and the combination of EDM with electrophoretic deposition polishing (EDP) are further studied. For the first approach, the experimental results reveal that adding surfactant Span20 to kerosene can disperse carbon and debris through the molecular reaction of the surfactant. As a result, carbon accumulation and concentrated discharge are reduced and material removal rate can be improved by 40-85%. Similarly, the addition of Al powder and surfactant Tween 80 to kerosene helps reduce the agglomeration of Al powder, thus ensuring even distribution of Al powder in the dielectric, which in turn improves surface roughness by 60%. The second approach influences the impedance of the electrical discharge profile by spraying thin films with different thickness, which consumes part of the discharge energy. The bulges on the surface are removed by the second electrical discharge, leaving craters of even depth and thus improve the surface roughness by 33%. In addition, the surface roughness stability is together with an increase in surface roughness improved by 18%. Finally, combining EDM with EDP using 0.3µm of Al2O3 particles can improve the initial surface roughness from 0.52 µmRa to a mirror-like surface of 0.068 µmRa. In addition, the total working time required for the polishing process can also be reduced significantly to around 5 to 10 minutes.
1.G.F. Benedict, Nontraditional manufacturing processes, Marcel Dekker, New York, (1987).
2.E.J. Weller, Nontraditional machining Processes, Society of Manufacturing Engineers, Dearborn, Michigan, USA. 2/e (1983).
3.K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture 43 (2003) 1287–1300.
4.P.E. Berghausen, H.D. Brettschneider, M. F. Davis, Electrodischarge machining program, The Cincinnati Milling Mc. Co. Final report ASD-TR-63-7-545 (1963).
5.E.V. Kholodnov, Precision electric-spark machining of metals in a carbon-free medium, Appl. Electrical Phenomena, No.1, pp.30-37, (1965).
6.K.M. Teshima, T. Sata, Performance of working fluid in high speed EDM, (1970) 26-34.
7.A. Erden, D. Temel, Investigation on the use of water as a dielectric liquid in electric discharge machining, in: Proceedings of the 22nd Machine Tool Design and Research Conference, Manchester (1981) 437– 440.
8.T. Masuzawa, K. Tanuka, Water-based Dielectric Solution for EDM, Annals of the CIRP, Vol.32, No.1, (1983) 119-122.
9.K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining using water as a working fluid-I: Micro-hole drilling, Precision Engineering, Vol.8, No.37, (1986)156-162.
10.W. König, L. Jörres, Aqueous solutions of organic compounds as dielectrics for EDM sinking, Annals of the CIRP 36 (1987) 105–109.
11.R. Kranz, F. Wendl, K.-D. Wupper, Influence of EDM conditions on the toughness of tool steels, Thyssen Edelstahl Technische Berichte (1990) 100–105.
12.I. Ogata, Y. Mukoyama, Carburizing and decarburizing phenomena in EDM’d surface, International Journal of Japan Society Precision Engineering 27 (3) (1993) 197–202.
13.W. König, F. Klocke, M. Sparrer, EDM-sinking using water-based dielectrics and electropolishing – a new manufacturing sequence in tool-making, in: Proceedings of the 11th International Symposium on Electromachining (ISEM XI), Lausanne, Switzerland (1995) 225- 234.
14.S.L. Chen, F.Y. Huang, Y. Suzuki, B. H. Yan, Electrical discharge machining characteristics of Ti-6Al-4V alloy using distilled water as a dielectric fluid, Journal of Japan Institute of Light Metals, Vol.47, No4, (1997) 226-231,.
15.S.L. Chen, B.H. Yan, F.Y. Huang, Influence of kerosene and distilled water as dielectric discharge machining characteristics of Ti-6Al-4V alloy, Journal of Materials Processing Technology, Vol.87, (1999) 107-111,.
16.R. Dewes, D. Aspinwall, J. Burrows, M. Paul, F. El-Menshawy, High speed machining-multi-function/hybrid systems, in: Proceedings of the Fourth International Conference on Industrial Tooling, Southampton, UK (2001) 91–100.
17.Q.H. Zhang, J.H. Zhang, J.X. Deng, Y. Qin, Z.W. Niu, Ultrasonic vibration electrical discharge machining in gas, Journal Materials Processing Technology 129 (2002) 135-138.
18.H. E. Bruyn, Some aspects of the influence of gap flushing on the accuracy in finishing by spark erosion, Annals of the CRIP, Vol.18, (1970) 147-161.
19.H.E. De Bruijn, T.H. Delft, A.J. Pekelaring, Effect of a magnetic field on the gap cleaning in EDM, Annals of the CIRP 27 (1) (1978) 93–95.
20.V.S.R. Murti, P.K. Philip, Comparative analysis of machining characteristics in ultrasonic assisted EDM by the response surface methodology, International Journal of Production Research 25 (2) (1987) 259–272.
21.V.S.R. Murti, P.K. Philip, An analysis of the debris in ultrasonic-assisted electrical discharge machining, Wear, 117, (1987) 241-250.
22.M. Kunieda, T. Masuzawa, A fundamental study on a horizontal EDM, Annals of the CIRP 37 (1) (1988) 187–190.
23.K.P. Rajurkar, G.F. Royo, Improvement in EDM performance by R.F. control and orbital motion, American Society of Mechanical Engineers 34 (1989) 51-62.
24.S. Enache, C. Opran, G. Stoica, E. Strajescu, The study of EDM with forced vibration of tool-electrode, Annals of CIRP, Vol.39, No.1, (1990) 167-170.
25.B. H. Yan, M. D. Chen, Effect of ultrasonic vibration on electrical discharge machining characteristic of Ti-6Al-4V alloy, Journal of Japan Institute of Light Metals, Vol.44, No.5, (1993) 281-285.
26.J.S. Soni, G. Chakraverti, Machining characteristics of titanium with rotary electro-discharge machining, Wear 171 (1994) 51– 58.
27.J. Zhixin, Z. Jianhua, A. Xing, Ultrasonic vibration pulse electro-discharge Machining of holes in engineering ceramics, Journal of materials processing technology, Vol.53, (1995) 811-816.
28.S. L. Chen, F. Y. Huang, Y. Suzuki, B. H. Yan, Improvement of material removal rate of Ti-6Al-4V alloy by electrical discharge machining with multiple ultrasonic vibration, Journal of Japan Institute of Light Metals, Vol.47 No.4, (1997) 220-225.
29.B.H. Yan, C.C. Wang, W.D. Liu, F.Y. Huang, Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode, International Journal of Advanced Manufacturing Technology 16 (5) (2000) 322–333.
30.Y. C. Lin, B. H. Yan, Y. S. Chang, Machining characteristics of titanium alloy (Ti-6Al-4V) using combination process of EDM with USM, Journal of Materials Processing Technology, 104, (2000) 171-177.
31.Y.H. Guu, H. Hocheng, Effects of workpiece rotation on machinability during electrical discharge machining, Materials and Manufacturing Processes 16 (1) (2001) 91–101.
32.M.L. Jeswani, Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining, Wear 70 (1981) 133-139.
33.T. Takawshi, Study on the mirror surface machining by planetary EDM, International Symposium of Electro machining ISME-7, (1983) 137-147.
34.N. Mohri, N. Saito, H. Ohtake, T. Takawashi, K. Kobayashi, Finishing on the large area of work surface by EDM, Journal of Japan Society of Precision Engineering, Vol.53, No l, (1987) 124-130.
35.H. Narumiya, N. Mohri, N. Saito, H. Ohtake, Y. Tsunekawa, T. Takawashi, K. Kobayashi, EDM by powder suspended working fluid, Proceedings of International symposium for Electro-Machining, The Japan Society of Electrical-Machining Engineers (1989) 5- 8.
36.N. Saito, N. Mohri, Improvement of machined surface roughness in large area EDM, Journal of the Japan Society of Precision Engineering, Vol.57, No.6, (1991) 954-958.
37.B.H. Yan, S.L. Chen, Effect of dielectric with suspended aluminum powder on EDM, Journal Chinese Society of Mechanical Engineers (1993) 307-312.
38.B.H. Yan, S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with aluminum powder, Journal of the Japan Institute of Metals, 58 (9) (1994) 1067-1072.
39.Q.Y. Ming, L.Y. He, Powder-suspension dielectric fluid for EDM, Journal of Materials Processing Technology 52 (1995) 44-54.
40.H.M. Chow, B.H. Yan, F.Y. Hung, Study of added powder in kerosene for the micro-slit machine of titanium alloy electro-discharge machining, Journal of Material Processing Technology, Vol.101, (2000) 95-103.
41.B.H. Yan Y.C. Lin, F.Y. Huang, C.H. Wang, Surface modification of SKD 61 during EDM with metal powder in the dielectric, Materials Transactions, JIM 42 (12) (2001) 2597-2604.
42.Y.F. Tzeng, C.Y. Lee, Effect of powder characteristics on electrodischarge machining, International Journal of Advanced Manufacturing Technology 7 (2001) 586-592.
43.W.S. Zhao, Q.G. Meng, Z.L. Wang, The application of research on powder mixed EDM in rough machining, Journal of Materials Processing Technology 129 (2002) 30-33.
44.F. Klocke, D. Lung, G. Antonoglou, D. Thomaidis, The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies, Journal of Materials Processing Technology 149 (2004) 191–197.
45.S.M. Pandit, K.P. Rajurkar, Crater geometry and volume form electro-discharge machined surface profiles by data dependent systems, Journal of Engineering for Industry, Vol. 102, (1980) 289-295.
46.J.D. Ayers, K. Moore, Formation of metal carbide powder by spark machining of reactive metals, Metallurgical Transactions A 15A (1984) 1117–1127.
47.P.C. Pandey, S.T. Jilani, Plasma channel growth and the resolidified layer in EDM, Precision Engineering 8 (2) (1986) 104–110.
48.A.G. Mamalis, G.C. Vosniakos, N.M. Vaxevanidis, Macroscopic and microscopic phenomena of electro-discharge machined steel surfaces: An experimental investigation, Journal of Mechanical Working Technology, Vol.15, (1987) 335-356.
49.T. Tsutsui, T. Tamura, Effect of the electro-discharge machined surface on the mechanical properties. On the surface defects and transverse rupture strength of cemented carbide, Bulletin of the Japan Society of Precision Engineering 20 (1) (1986) 60-61.
50.L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh, Quantification of surface damage of tool steels after EDM, International Journal of Machine Tools & Manufacture 28 (4) (1988) 359–372.
51.L.C. Lee, L.C. Lim, Y.S. Wong, H.H. Lu, Towards a better understanding of the surface features of electro-discharge machined tool steels, Journal of Materials Processing Technology 24 (1990) 513–523.
52.K. Masui, T. Sone, Surface integrity and its improvement of EDM, Journal of the Japan Society of Precision Engineering, Vol.57, No.6, (1991) 945-948.
53.L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool steels, Materials Science Technology 7 (3) (1991) 239–248.
54.Y. Yang, Y. Mukoyama, H. Kato, T. Hanaka, Analysis of crack generative region in crater machined by impulsive electrical discharge, 精密工學會誌, Vol.60, No.3, (1994) 388-392.
55.B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite, International Journal of Machine Tools & Manufacture 40 (10) (2000) 1403–1421.
56.Y.H. Guu, H. Hocheng, C.Y. Chou, C.S. Deng, Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel, Materials Science and Engineering A358 (2003) 37–43.
57.G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R. Flükiger, Microstructure at submicron scale of the white layer produced by EDM technique, Journal of Materials Processing Technology 149 (2004) 289–295.
58.H. Narumiya, N. Mohri, M. Suzuki, Surface modification by EDM, Research and Technological Development in Nontraditional Machining, Proceedings of the Winter Annual Meeting of the ASME, Chicago, USA, Vol.34, (1988) 21-30.
59.N. Mohri, N. Saito, M. Suzuki, T. Takawashi, K. Kobayashi, Surface modification by EDM - an innovation in EDM with semi-conductive electrodes, American Society of Mechanical Engineers, Production Engineering Division (Publication) PED 34 (1988) 21-30.
60.A. Gangadhar, M.S. Shunmugam, P.K. Philip, Surface modification in electrodischarge processing with a powder compact tool electrode, Wear 143, (1991) 45-55.
61.N. Mohri, N. Saito, Y. Tsunekawa, N. Kinoshita, Metal surface modification by electrical discharge machining with composite electrode, Annals of the CIRP 42 (1) (1993) 219–222.
62.Y. Fukuzawa, Y. Kojima, E. Sekiguti, N. Mohri, Surface modification of stainless steel by electrical discharge machining, The Iron and Steel Institute of Japan International 33 (9) (1993) 996-1002.
63.Q.Y. Ming, L.Y. He, Powder-suspension dielectric Fluid for EDM, J of Material Processing Technology, Vol.52, (1995) 44-54.
64.J.S. Soni, G. Ghakraverti, Experiment investigation on migration of material during EDM of die steel (T215 Cr12), Journal of Materials Processing Technology 56 (1996) 439-451.
65.Y. Tsuekawa, M. Okumiya, N. Mohri, E. Kuribe, Formation of composite layer containing TiC precipitates by electrical discharge alloying, Materials Transactions, JIM Vol.38 No.7 (1997) 630-635.
66.D.I. Pantelis, N.M. Vaxevanidis, A.E. Houndri, P. Dumas, M. Jeandin, Investigation into the application of electrodischarge machining as steel surface modification technique, Surface Engineering 14 (1) (1998) 55–61.
67.Y.C. Lin, B. H. Yan, F. Y. Huang, Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM, Journal of Materials Processing Technoloy 115 (2001) 359-366.
68.Z.L. Wang, Y. Fang, P.N. Wu, W.S. Zhao, K. Cheng, Surface modification process by electrical discharge machining with Ti powder green compact electrode, Journal of Materials Processing Technology 129 (2002) 139-142.
69.J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, E.M. Aspinwall, Workpiece surface modification using electrical discharge machining, International Journal of Machine Tools & Manufacture 43 (2003) 121–128.
70.T. Moro, N. Mohri, H. Otsubo, A. Goto, N. Saito, Study on the surface modification system with electrical discharge machine in the practical usage, Journal of Materials Processing Technology 149 (2004) 65–70.
71.H. Huang, H. Zhang, L. Zhou, H. Y. Zheng, Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol, Journal of micro-mechanics and microengineering, 13, (2003) 693- 700.
72.P. Pecas, E. Henriques, Influence of silicon powder-mixed dielectric on conventional electrical discharge machining, International Journal of Machine Tools & Manufacture, 43, (2003) 1465- 1471.
73.M. J. Rosen, Surfactants and Interfacial Phenomena, John Wiley & Sons, New York (1989) 7-103.
74.D. J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworth- Heinemann, Oxford (1992) 64-96.
75.Jan M. Neirynck, G. -R. Yang, Shyam P. Murarka, Ronald J. Gutmann, The addition of surfactant to slurry for polymer CMP: effects on polymer surface, removal rate and underlying Cu, Thin Solid Films, 290-291, (1996) 447-452.
76.P. Bernard, Ph. Kapsa, T. Coude, J. -C. Abry, Influence of surfactant and salts on chemical mechanical planarisation of copper, Wear, 259, ( 2005) 1367-1371.
77.E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming,and plastic moulding (LIGA rocess), Microelectronic Engineering, 4 (1), (1986) 35-56.
78.A. S. Dukhin P. J. Goetz, Ionic properties of so-called“non-ionic” surfactants in non-polar liquids, Dispersion Technology Inc., Bedford Hills, NY, USA, (2004) 1-21.
79.J. Q. Feng, D. A. Hays, Relative importance of electrostatic forces on powder particles, Powder Technology, 135-136,(2003) 65-75.
80.N. Mohri, N. Saito, T. Takawashi, Mirror-Like Finishing by EDM, in: Proceedings of the 25th International Symposium on Machine Tool Design and Symposium, UK, (1985) 329-336.
81.Y. S. Wong, L . C. Lim, Iqbal Rahuman, W. M. Tee, Near-Mirror-Finish Phenomenon in EDM Using Powder-Mixed, Journal of Material Processing Technology, 79, (1998) 30-40.
82.Y. F. Luo, Z. Y. Zhang, C. Y. Yu, Mirror Surface EDM by Electric Field Partially Induced, Annals of the CIRP 34, (1988) 179-181.
83.B.H. Yan, S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with alumina powder, Journal of Japan institute Metals 58 (9) (1994) 1067-1072.
84.W. J. Chow, C. H. Sun, G. P. Yu, J. H. Huang, Optimization of the deposition process of ZrN and TiN thin films on Si(100) using design of experiment method, Materials Chemistry and Physics 82 (2003) 228-236.
85.J. Q. Feng, D. A. Hays, Relative importance of electrostatic forces on powder particles, Powder Technology 135-136 (2003) 65-75.
86.L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh, Quantification of surface damage of tool steels after EDM, International Journal of Machine Tools and Manufacture, 102 (1980) 289-295.
87.Kun Ling Wu, Biing Hwa Yan, Fuang Yuan Huang, Shin Chang Chen, Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric, International Journal of Machine Tools and Manufacture, 45 (2005) 1195-1201.
88.W. S. Zhao, Q. G. Meng, Z. L. Wang, The application of research on powder mixed EDM in rough machining, Journal of Materials Processing Technology, 129 (2002) 30-33.
89.A. Curodeau, Molds surface finishing with new EDM process in air with thermoplastic composite electrodes, Journal of Materials Processing Technology, 149 (2004) 278-283.
90.Yoshiyuki Uno, Akira Okadaa, Kensuke Uemurab, Purwadi Raharjo, High-efficiency finishing process for metal mold by large-area electron beam irradiation, International Journal of Precision Engineering, (2005). This paper accepted.
91.D. Kremer, J. L. Lebrun, B. Hosari, A. Moisan, Effect of ultrasonic vibration on the performances in EDM, Annals of CIRP, 38 (1) (1989) 199-202.
92.D. Kremer, C. Lhiaubet, A. Moisan, A study of the effect of synchronizing ultrasonic vibrations with pulse in EDM, Annals of CIRP, 40 (1) (1991) 211-214.
93.Omer O. Van der Biest, Luc J. Vandeperre, Electrophoretic deposition of materials, Annual Review of Materials Science, 29 (1999) 327-352.
94.K. Simovic, V. B. Miskovic-Stankovic, D. Kicevic, P. Jovanic, Electrophoretic deposition of thin alumina films from water suspension, Colloids and Surfaces (A), 209 (2002) 47-55.
95.K. Takahata, S. Aoki, T. Sato, Fine surface finishing method for 3-dimensional micro structures, proceeding IEEE MEMS. (1996) 73-78.
96.Y. Tani, T. Saeki , Y. Samitsu , K. Kobayashi , Y. Sato , Infeed grinding of silicon wafers applying electrophoretic deposition of ultrafine abrasives, Annals of the CIRP, 47 (1) (1998) 245-248.
97.Z. Haga, T. Semba, Electrophoretic polishing of zirconia ceramics using a porous anodic film as a binder of ultrafine silica abrasives, JSME International Journal Series C, 41 (4) (1998) 922-928.
98.J. A. Yopps, D. W. Fuerstenau, The zero point of charge of alpha-alumina, Journal of Colloid Science, 19 (1963) 61-71.
99.L. C. Lee, L. C. Lim, Y. S. Wong, Towards Crack Minimisation of EDMed Surface, Journal of Materials Processing Technology, 24 (1990) 516-523.
100. R. Bormann, Understanding Die-Sinking EDM Surface Integrity, Journal of Carbide and Tool, (1989) 12-16.
101. L.C. Lee, L. C. Lim, V. Narayanan, V. C. Venkatesh, Quantification of Surface Damage of Tool Steel after EDM, International Journal of Machine Tools & Manufacture, 28 (4) (1988) 359-372.
102. 陳劉旺, 工業塗料與高分子化學 , 高立圖書, (1997) 301-308.