跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳俊宇
Jyun-yu Chen
論文名稱: 頻寬可重組式微波帶通濾波器之研製
Bandwidth Reconfigurable Microwave Bandpass Filter
指導教授: 丘增杰
Tsen-chieh Chiu
陳念偉
Nan-wei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 65
中文關鍵詞: 可重組式濾波器低介入損耗可調式微波共振器可調式濾波器
外文關鍵詞: varactor-tuned, reconfigurable filter, low insertion loss, microwave tunable resonator, tunable filter
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將呈現一可解析的方法(analytical method),設計一可重組式微波共振器(reconfigurable microwave resonators)結構,此解析的方法著重於,如何找到共振器上可重組的極點與零點(reconfigurable poles and zeros),使得在應用可變電容二極體(varactor diode)製作的可重組式共振器,能有一個準確且有效率的設計指南。再來,利用此可重組式共振器將可實現一具有頻寬可重組效果(bandwidth reconfigurability)的微波帶通濾波器(bandpass filter,BPF)。
    根據本論文提出的方法設計的可重組式濾波器,在調整頻寬的範圍內,可得到低通帶介入損耗(in-band insertion loss)的結果,再來,當頻寬變化時,濾波器的選擇度(selectivity)幾乎維持不變。最後再實現電路時,使用共平面波導(coplanar-waveguide)結構,完成本次論文的實驗,並且得到通帶內的介入損耗恆小於1.8dB,折返損耗(return loss)恆大於10dB。更重要的是,比例頻寬(fractional bandwidth,FBW)可由54.1%(中心頻率3.03GHz)變化到90.1%(中心頻率2.64GHz)。


    An analytical design method for reconfigurable microwave resonant structures is presented. The method aims for how to position the reconfigurable poles and zeros of the resonators. The proposed analytical method is essentially poised for an efficient and accurate design of the reconfigurable microwave resonators loaded with varactors. Furthermore, a design approach for microwave bandpass filter (BPF) with bandwidth reconfigurability is also presented.
    Compared to the reported design methodology, the presented approach aims for the design of the reconfigurable BPF with relatively wide bandwidth tuning range, as well as low in-band insertion loss. Furthermore, the filter selectivity remains almost unchanged while the fractional bandwidth varies. The proposed design approach is experimentally verified through the demonstration of a coplanar-waveguide BPF design. As a result, passband insertion loss is less than 1.8dB, and the return loss is greater than 10dB. Most importantly, the FBW has a relatively high reconfigurability ranging from 54.1% (at 3.03 GHz) to 90.9% (at 2.64 GHz).

    摘要 i Abstract ii 致謝 iii 目錄 vi 圖目錄 viii 表目錄 xi 第一章 序論 1 1.1 研究動機與目的 1 1.2 文獻回顧與論文概述 4 第二章 共平面波導共振器 6 2.1 傳輸線與共平面波導結構 6 2.2 共平面波導式並聯共振器 8 2.3 共平面波導式串聯共振器 12 第三章 可重組式共振器設計 19 3.1 濾波器傳輸零點與極點 19 3.2 零點與極點可重組式之共振器 21 3.3 理想的可重組式共振器之分析 26 3.4 非理想的可重組式共振器之分析 32 3.5 可重組式共振器之實作量測 40 第四章 頻寬可重組式帶通濾波器設計 44 4.1 可重組式共振器上的參數設定與特性 44 4.2 串聯式開路殘段的參數設定 50 4.3 頻寬可重組式帶通濾波器之實作量測 56 第五章 結論 61 參考文獻 62

    [1] H. Okazaki, A. Fukuda, K. Kawai, T. Furuta, S. Narahashi,“Reconfigurable RF circuits for future band-free mobile terminals,” Signals, Systems and Electronics, 2007. ISSSE ''07. International Symposium, pp.99-102, Jul. 2007.
    [2] I. C. Hunter and J. D. Rhodes, “Electronically tunable microwave bandpass filter,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.1354–1360, Sep. 1982.
    [3] A. R. Brown and G. M. Rebeiz, “A varactor-tuned RF Filter,” IEEE Trans. Microwave Theory Tech., vol.48, pp.1157–1160, Jul. 2000.
    [4] B.-W. Kim and S.-W. Yun, “Varactor-tuned combline bandpass filter using step-impedance microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 4, pp. 1279–1283, Apr. 2004.
    [5] S.-J. Park and G. M. Rebeiz, “Low-loss two-pole tunable filters with three different predefined bandwidth characteristics,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 5, pp. 1137-1148, May 2008.
    [6] J. Lee and K. Sarabandi, “An analytic design method for microstrip tunable filters,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 7, pp. 1699-1706, Jul. 2008.
    [7] M. A. El-Tanani and G. M. Rebeiz, “A two-pole two-zero tunable filter with improved linearity,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 4, pp. 830-839, Apr. 2009.
    [8] M. A. El-Tanani and G. M. Rebeiz, “Corrugated microstrip coupled lines for constant absolute bandwidth tunable filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 4, pp. 956-963, Apr. 2010.
    [9] W.-X. Tang and J.-S. Hong, “Varactor-tuned dual-mode bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 8, pp. 2213-2219, Aug. 2010.
    [10] C. Rauscher, “Reconfigurable bandpass filter with a three-to-one switchable passband width,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 2, pp. 573–577, Feb. 2003.
    [11] G. L. Matthaei, “Narrow-band, fixed-tuned, and tunable bandpass filters with zig–zag hairpin–comb resonators,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 4, pp. 1214–1219, Apr. 2003.
    [12] M. Sánchez-Renedo et al., “Tunable combline filter with continuous control of center frequency and bandwidth,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 191–199, Jan. 2005.
    [13] W. M. Fathelbab and M. B. Steer, “A reconfigurable bandpass filter for RF/microwave multifunctional systems,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 1111–1116, Mar. 2005.
    [14] H.-L. Zhang and Kevin J. Chen, “Bandpass filters with reconfigurable transmission zeros using varactor-tuned tapped stubs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 249–251, May 2006.
    [15] A. Miller and J.-S. Hong, “Wideband bandpass filter with reconfigurable bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 28–30, Jan. 2010.
    [16] A. Miller and J.-S. Hong, “Combline filter with tunable bandwidth and centre frequency,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 1476-1479.
    [17] I. Reines, S.-J. Park and G. M. Rebeiz, “Compact low-loss tunable X-band bandstop filter with miniature RF-MEMS switches,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 7, pp. 1881–1895, Jul. 2010.
    [18] H. Joshi, H. H.Sigmarsson, D. Peroulis, and W.J. Chappell, “Highly loaded evanescent cavities for widely tunable high-Q filters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 2133-2136.
    [19] P. Blondy, C. Palego, M. Houssini, A. Pothier, and A. Crunteanu, “RF-MEMS reconfigurable filters on low loss substrates for flexible front ends,” 2007 Asia Pacific Microwave Conference, Dec. 2007., pp.1-3.
    [20] H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, “High-Q fully reconfigurable tunable bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 12, pp. 3525-3533, Dec. 2009.
    [21] Xiaoyu Mi, O. Toyoda, S. Ueda, “MEMS tunable bandpass filters on high-k LTCC,” in IEEE 23rd International Micro Electro Mechanical Systems (MEMS )Conference, pp.787-790, Jan. 2010.
    [22] M. A. El-Tanani and G. M. Rebeiz, “High-performance 1.5–2.5-GHz RF-MEMS tunable filters for wireless applications, ” IEEE Trans. Microwave Theory Tech., vol. 58, no. 6, pp. 1629-1637, Jun. 2010.
    [23] H. H. Sigmarsson, J. Lee, D. Peroulis and W. J. Chappell, “Reconfigurable order bandpass filter for frequency agile systems,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 1756-1759.
    [24] P. W. Wong and I. C. Hunter, “Parallel-coupled switched delay line (SDL) reconfigurable microwave filter,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 513-516.
    [25] W.-H. Tu, “Switchable microstrip bandpass filters with reconfigurable frequency responses,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 1488-1491.
    [26] C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 12, Dec. 1969.
    [27] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Norwood, MA: Artech House, 1980.
    [28] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applicatioins. New York: Wiley, 2001.
    [29] D. M. Pozar, Microwave Engineering, 3¬rd ed. John Wiley & Sons, Inc., 2005.
    [30] 方國誌, “超寬頻共平面波導帶通濾波器之研製,” 國立中央大學電機工程所碩士論文, 2006.
    [31] 王孝寧, “微小化超寬頻共平波導帶通濾波器之研製,” 國立中央大學電機工程所碩士論文, 2009.
    [32] N. I. Dib et al., “Theoretical and experimental characterization of coplanar waveguide discontinuities for filter applications,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 873-881, May 1991.
    [33] Khelifa Hettak et al., “A useful new class of miniature CPW shunt stubs and its impact on millimeter-wave integrated circuits” IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, Dec. 1999.
    [34] K. Hettak, C. J. Verver, M. G. Stubbs, and G. A. Morin, “A novel compact uniplanar MMIC Wilkinson power divider with ACPS series stubs,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, Jun. 2003, pp. 59–62.
    [35] N. Yang, Z. N. Chen and Y. Zhang, “CPW bandpass filter with serially-connected series-stub resonators,” in Proc. 35rd Eur. Microwave Conf., vol. 1, Oct. 2005.
    [36] K. Hettak, G. A. Morin, and M. G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and wilkinson dividers using shunt and series stub loading,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 5, pp. 1624-1635, May 2005.
    [37] 蔡炫儒, “W頻段光子發射器中射頻前端電路之研製,” 國立中央大學電機工程所碩士論文, pp. 43-68, 2010.
    [38] Skyworks Solutions, Inc. silicon abrupt junction varactors SMV1405 data sheet.

    QR CODE
    :::