跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁吉雄
Chi-Hsiung Liang
論文名稱: 主動式擺鎚吸振器控制之研究
Studies on control of the active pendulum vibration absorber
指導教授: 董必正
Pi-Cheng Tung
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 99
語文別: 英文
論文頁數: 146
中文關鍵詞: 離心式擺鎚吸振器主動振動控制
外文關鍵詞: active vibration control, centrifugal pendulum, vibration absorber
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是以倒傳遞類神經網路、基因演算法及模糊理論結合倒傳遞類神經網路為基礎的控制器應用在離心式擺鎚吸震器的主動式控制,藉由所提出的控制器來調整離心式擺鎚吸震器的擺鎚扭矩參數,使得系統的反共振頻率(anti-resonance frequency)偏移,來降低轉盤的震動量。經由推導主動式擺鎚吸震器的動態數學模式,繪出擺鎚扭矩參數變化與轉盤震動及擺鎚最大振幅的頻率響應圖。當系統的擾動頻率改變時,可藉由所提出的控制器找出最佳的擺鎚扭矩參數值,使系統的轉盤震動達到最小值。由系統的模擬結果可以看出所提出的控制器在擾動頻率改變時能有效的使旋轉震動降低到所期望的值。


    In this study, the back-propagation (BP) neural network algorithm, genetic algorithms (GAs) and fuzzy back-propagation neural network are proposed for active control of a centrifugal pendulum vibration absorber (CPVA). The proposed algorithms are applied in this case to regulate the anti-resonance frequency in an active pendulum vibration absorber (APVA), by suppressing vibration of the carrier. The dynamic model of the APVA was developed and simulated using MATLAB. In the simulation results, when the variations of the excitation frequency, the controllers will find the optimal variables to determine an appropriate value such that the vibration amplitude of the carrier is minimized. A comparison of the carrier vibration results for the BP neural network algorithm, the genetic algorithm and fuzzy back-propagation neural network are performed. The simulation results demonstrate the effectiveness of the proposed APVA for reducing the carrier vibrations.

    中文摘要 I ABSTRACT II CONTENTS III LIST OF FIGURES V LIST OF TABLES VIII NOMENCLATURE IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 ACTIVE PENDULUM VIBRATION ABSORBER SYSTEM 17 2-1 CPVA SYSTEM MODELING 17 2-2 CPVA SYSTEM LINEAR ANALYSIS 26 2-3 FREQUENCY RESPONSE OF THE NONLINEAR APVA WITH ALTERED VALUES 50 CHAPTER 3 APVA USING A BACK-PROPAGATION NEURAL NETWORK 53 3-1 BACK PROPAGATION NEURAL NETWORK 53 3-2 BLOCK DIAGRAM OF THE NEURAL NETWORK BASED CONTROL SYSTEM FOR THE APVA 54 3-3 DYNAMIC BACKPROPAGATION FOR THE NEUROIDENTIFIER 57 3-4 DYNAMIC BACKPROPAGATION FOR THE NEUROCONTROLLER 60 3-5 CONVERGENCE AND STABILITY 64 3-6 RESPONSE OF THE NONLINEAR APVA ALTERING VALUES AT SPECIFIC FREQUENCIES 74 3-7 SIMULATION RESULTS 76 CHAPTER 4 GENETIC ALGORITHM OPTIMIZATION PROCEDURE FOR THE APVA 91 4-1 GENETIC ALGORITHM OPTIMIZATION PROCEDURE 91 4-2 INITIALIZATION 92 4-3 EVALUATE THE FITNESS FUNCTION 93 4-4 GENETIC OPERATORS 94 4-5 ELITIST STRATEGY 96 4-6 KNOWLEDGE BASE 96 4-7 DESIGN OF GENETIC ALGORITHMS FOR THE APVA 96 4-8 SIMULATION RESULTS 99 CHAPTER 5 DESIGN OF A FUZZY BP NEURAL NETWORK CONTROLLER FOR THE APVA 108 5-1 FUZZY BP NEURAL NETWORK CONTROL ALGORITHM 108 5-2 BLOCK DIAGRAM OF THE FUZZY BP CONTROLLER FOR THE APVA 114 5-3 SIMULATION RESULTS 116 CHAPTER 6 CONCLUSIONS 127 REFERENCES 129

    [1] W. T. Thomson, Theory of Vibration with Applications (2nd edition). Englewood cliffs, Prentice-Hall, New Jersey, 1981.
    [2] G. Genta, Vibration Dynamics and Control, Springer Science Business Media, New York, 2009.
    [3] K. Wilson, Practical Solution of Torsional Vibration Problems, 3rd edition, vol. IV, Chapman & Hall Ltd, London,1968.
    [4] E. S. Taylor, “Eliminating crack shaft vibration in radial aircraft engines,” Transactions of the Society of Aeronautical Engineers, vol. 38, pp. 81-87, 1936.
    [5] J. P. Den Hartog, Mechanical Vibrations, 4th edition, McGraw-Hill Book Company, Inc., New York, N. Y., chapt. 5, 1956.
    [6] D. E. Newland, “Nonlinear aspects of the performance of centrifugal pendulum vibration absorbers,” Journal Engineering for Industry, Transaction of the ASME, vol. 86, August, pp. 257-263, 1964.
    [7] M. Sharif-Bakhitar and S. W. Shaw, “The dynamic response of a centrifugal pendulum vibration absorber with motion-limiting stops,” Journal of Sound and Vibration, vol. 126, pp. 221-235, 1988.
    [8] M. Sharif-Bakhtiar and S. W. Shaw, “Effects of nonlinearities and damping on the dynamic response of a centrifugal pendulum vibration absorber,” Journal of Vibration and Acoustics, Transaction of the ASME, vol. 114, July, pp. 305-311, 1992.
    [9] D. L. Cronin, “Shake reduction in an automobile engine by means of crankshaft-mounted pendulums,” Mechanism and Machine Theory, vol. 27, no. 5, pp. 517-533, 1992.
    [10] B. Demeulenaere, P. Spaepen and J. D. Schtter, “Input torque balancing using a cam-based centrifugal pendulum: design procedure and example,” Journal of Sound and Vibration, vol. 283, pp. 1-20, 2005.
    [11] A. G. Haddow and S. W. Shaw, “Centrifugal pendulum vibration absorber: an experimental and theoretical investigation,” Nonlinear Dynamics, vol. 34, pp. 293-307, 2003.
    [12] Y. J. Wang, C.D. Chen and C. K. Sung, “Design of a frequency-adjusting device for harvesting energy from a rotating wheel,” Sensors and Actuators A: Physical, vol. 159, pp. 196-203, 2010.
    [13] S. G. Tewani, B. L. Walcott and K. E. Rouch, “Active optimal vibration control using dynamic absorber,” IEEE International Conference on Robotics and Automation, pp. 1182-1187, 1991.
    [14] Y. D. Chen, C. C. Fuh, P. C. Tung, Application of voice coil motors in active dynamic vibration absorbers, IEEE Transactions on Magnetics vol. 41, no. 3, pp. 1149-1154, 2005.
    [15] M. Hosek, H. Elmali and N. Olgac, “A tunable torsional vibration absorber: the centrifugal delayed resonator,” Journal of Sound and Vibration, vol. 205, pp. 151-165, 1997.
    [16] M. Hosek, N. Olgac and H. Elmali, “Torsional vibration control of MDOF systems using the centrifugal delayed resonator,” IEEE International Conference on Control Applications, October pp. 534-539, 1997.
    [17] A. Blanco-Ortega, F. Beltran-Carbajal, A. Favela-Contreras and G. Silva-Navarro, “Active disk for automatic balancing of rotor-bearing systems,” American Control Conference, June 11-13, pp. 3023-3028, 2008.
    [18] S. T. Wu, “Active pendulum vibration absorbers with a spinning support,” Journal of Sound and Vibration, vol. 323, pp.1-16, 2009.
    [19] D. Bae, W. Jung and I. Sohn, “A fatigue design method of spot-welded lap joint using neural network,” International Journal of Modern Physics B vol. 17, Nos. 8 & 9, pp. 1684-1690, 2003.
    [20] Z. J. Sun and L. L. Wang, “Studies on dynamic damage evolution for PP/PA polymer blends under high strain rates,” International Journal of Modern Physics B vol. 22, Nos. 9, 10 &11, pp. 1409-1416, 2008.
    [21] M. Andrecut and M. K. Ali, “Self-organizing neural network model of the sensory-motor mechanism,” International Journal of Modern Physics B vol. 14, No. 17, pp. 1815-1824, 2000.
    [22] S. Jankowski, M. Wierzbowski, P. Kaminski and M. Pawlowski, “Implementation of neural network method to investigate defect centers in semi-insulating materials,” International Journal of Modern Physics B vol. 16, Nos. 28 & 29, pp. 4449-4454, 2002.
    [23] M. Kalkat, S. Yildirim and I. Uzmay, “Design of artificial neural networks for rotor dynamics analysis of rotating machine systems,” Mechatronics, vol. 15. pp. 573-588, 2005.
    [24] M. T. Hangan, H.B. Demuth and M. H. Beale, Neural network design, PWS publishing company, 1996.
    [25] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Transactions on Neural Networks, vol. 6, no. 1, January, pp. 144-155, 1995.
    [26] T. Yabuta and T. Yamada, “ Learning control using neural networks, “ in Proc. IEEE Int. Conf. Robotics and Automation, Sacramento, CA, Apr.1991, pp. 740-745.
    [27] D. Goldberg, Genetic algorithms in Search, Optimization, and Machine Learning, Addison Wesley, New York, 1989.
    [28] R. J. Patton, J. Chen, and G. P. Liu, “Roust fault detection of dynamic system via genetic algorithms,” Proceedings of the Institution of Mechanical Engineers part I Journal of Systems & Control Engineering, vol. 211, Issue 5, pp.357-364, 1997.
    [29] T. T. H. Ng and G. S. B. Leng, “Application of genetic algorithms to conceptual design of a micro-air vehicle,” Engineering Application of Artificial Intelligence, vol. 15, pp. 439-445, 2002.
    [30] O. E. Canyurt, “Estimation of welded joint strength using genetic algorithm approach,” International Journal of Mechanical Sciences, vol. 47, pp. 1249-1261, 2005.
    [31] J. H. Hyun and C. O. Lee, “Optimization of feedback gains for a hydraulic servo system by genetic algorithms,” Proceedings of the Institution of Mechanical Engineers part I Journal of Systems & Control Engineering, vol. 212, Issue 5, pp. 395-401, 1998.
    [32] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, Wiley-InterScience publication, 1997.
    [33] K. Georgej and B. Yuan, Fuzzy sets and fuzzy logic theory and applications, Pearson Education Ltd, 2003.
    [34] S. J. Huang and R.J. Lian, “Active vibration control of a dynamic absorber using fuzzy algorithms,” Mechatronics, vol. 6. no. 3, pp. 317-336, 1996.
    [35] P. Andrzej, Fuzzy modeling and control, Phydica-Verlag a Springer-Verlag company, 2001.
    [36] L. A. Zadeh, “Fuzzy set,” Information and Control, vol. 8 pp. 338-353, 1965.
    [37] J. Vieira, F. M. Dias and A. Mota, “Artificial neural networks and neuro-fuzzy systems for modeling and controlling real systems: a comparative study,” Engineering Applications of Artificial Intelligence, vol. 17. pp. 265-273, 2004.
    [38] M. A. Akcayol and C. Elmas, “NEFCLASS-based neuron fuzzy controller for SRM drive,” Engineering Applications of Artificial Intelligence, vol. 18. pp. 595-602, 2005.

    QR CODE
    :::