| 研究生: |
吳季蓉 Ching-Rung Wu |
|---|---|
| 論文名稱: |
高滲透性含水層微水實驗 Analysis of Depth-Dependent Pressure Head of Slug Tests in Highly Permeable Aquifers |
| 指導教授: |
陳家洵
Chia-Shyun Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 深度修正 、微水實驗 、振盪 、高滲透性含水層 |
| 外文關鍵詞: | data analysis, highly permeable aquifers, slug test, depth-dependent pressure head |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在高滲透性非受壓含水層進行微水實驗(slug test)時,若井中水位面落在井篩段之間;則水位回升會造成有效井篩長度隨著時間而改變,此種現象稱為部分浸水(partially submerged)。部分浸水的壓力特徵呈現非振盪曲線特徵;濾料補水時會呈現折線,無濾料補水時會呈現一負斜率直線。因有效井篩長度隨著時間而改變,需利用合適的方法來修正紀錄到的水位壓力,本次研究比較利用無修正水位壓力的模式分析,得到的結果會低估徑向水力導數(horizontal hydraulic conductivity)22%。而當半對數圖上產生下凹曲線特徵時,則表示為有效井篩長度隨時間變化太大所造成,建議避免實驗時初始水位過大或壓力計擺放深度過深。若井中水位面落在井篩之上,稱為全部浸水(fully submerged),則會產生振盪曲線特徵。本次研究建立深度修正標準曲線疊套方法,由於使用第一個水頭極大值位置來代替真正的初始水位,所以標準曲線壓力頭在開始的前三秒壓力頭比微水實驗資料極大值來的小,但卻不影響分析結果。利用水頭發生極大值與極小值的各時間點和振盪週期,來驗證標準曲線疊套決定所得到的參數和結果,獲得到相同的答案。當使用未考慮深度影響的模式分析,標準曲線疊合振盪資料無法完全疊合,亦會低估徑向水力導數結果,表示全部浸水狀態下,井中動態壓力水頭需考慮深度的影響;利用深度修正來分析振盪資料結果較為正確。
Abstract
Analysis of pressure head of slug Tests in highly permeable aquifers. Slug tests have two conditions in the well. Partially submerged is the static water table located in the screen and sand pack. Fully submerged is the static water table is situate above both the screen and sand pack. The recharge curve exhibits log-liner form partially submerged screen and sand pack conditions. The effective length of screen changed follow time, need using applicable model to correcting pressure head. If is not to correct pressure head, horizontal hydraulic conductivity will be underestimated 28%. When a curve exhibits down-concave, express what the effective length of screen changed too much follow time. It is suggested that the initial well water displacement be less and the pressure transducer is placed at depth not close to the well bottom. At fully submerged conditions, a curve matching method is presented for the analysis of oscillatory pressure head that is dependent on depth. The Springer and Gelhar (1991) solution and a depth correction relation are used to generate dimensional type curves of pressure head versus time. A trial-and-error procedure is established to find the type curve best fitting the field data by adjusting the two unknown parameters, the horizontal hydraulic conductivity and the effective length of well water column. Analytical relations for some oscillation characteristics of the converted pressure head are derived, and they are useful in checking accuracy of the estimates. A field example is given to demonstrate this curve matching method, and it indicates that the true initial well water displacement is important to the data analysis. It is suggested that the actual initial well water displacement be determined, especially when the pressure transducer is placed at depth not close to the initial well water level.
參考文獻
陳家洵、馬國鳳、陳瑞昇,2004。斷層活動機制及其引發現象與地震潛勢評估研究-台灣西部地區(二之二),經濟部中央地質調查所期末報告書,43-45,63,66頁。
Abramowitz, M. and I. A.Stegun,1972. Handbook of Mathematical Functions. Dover Publications.
Binkhorst G. K., and Robbins G. A.,1998. Conducting and Interpreting
Slug test in Monitoring Wells eith Partially Submerged Screens., Ground Water 36, no.2: 225-229.
Boast, C. W., and Kirkham, D., 1971. Auger hole seepage theory , Soil Sci. Soc. Am. Proc.,35, no.3: 365.
Bouwer, H., and R. C. Rice, 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resour. Res. 12, no.3: 423 -428.
Bouwer H., The Bouwer and Rice , 1989. slug test – an update, Ground
Water 27, no.3:304-309.
Butler J. J., Jr., 1998. The Design, Performance, and Analysis of Slug Tests, Boca Raton, Florida: Lewis Publishers.
Butler J. J., Jr., 2002. A simple correction for slug test in smalldiameter wells. Ground water 40,no.3: 303-307.
Butler J. J., Jr., E. J. Garnett and J. M. Healey, 2003. Analysis of slug tests in formations of high hydraulic conductivity, Ground Water 41, no.5: 620-630.
Butler, J. J. Jr., and X. Zhan, 2004. Hydraulic tests in highly permeable aquifers, Water Resour. Res. 40, w12402, doi: 10.1029 / 2003 WR 002998.
Cooper, H. H., Jr., J. D. Bredehoedft, I. S. Papadopulos, and R. R. Bennett, 1965, The response of well-aquifer systems to seismic waves, J. Geophys. Res. 70: 3915 – 3926.
Cooper H. H., J. D. Bredehodft, and I. S. Papadopulos, 1967. Response of afinite-diameter well to an instantaneous charge of water, Water Resour. Res..3,no.1:263-269
Freeze R.A. and J. A. Cherry, 1979.GROUNDWATER, Prentice Hall, Inc.
Hvorslev M. J., 1951.Time lag and soil permeability in ground-water
observations, U.S. Army Corps of Engrs. Waterways Exper. Sta. Bull, 36:1-50
Kabala, Z. J., G. F. Pinder, and P. C. D. Milly, 1985. Analysis of well-aquifer response to a slug test, Water Resour. Res. 21, no.9:1433-1436.
Kipp, K. L. Jr, 1985. Type curve analysis of inertial effects in the response of a well to a slug test, Water Resour. Res. 21, no.9:1397-1408.
Kreyszig E., 1983. Advanced Engineering Mathematics, 5th edition, John Wiley and Sons
Kruseman, G. P. and de Ridder, N. A.,1990. Analysis and Evaluation of Pumping Test Data –ILRI Publication 47, The Netherlands, Int. Inst. for Land Reclamation and Improvement.
McElwee, C. D., and M. A. Zenner, 1998. A nonlinear model for analysis of slug test data, Water Resour. Res. 34, no.1: 55-66.
McElwee, C. D., Butler, J. J., Jr., and Bohling, G. C., Nonlinear analysis of slug test in highly permeable aquifers using a Hvorslev-type approach, Kans. Geol. Surv. Open-File Rep. 92-39.1992.
Springer, R. K., and L. W. Gelhar, 1991. Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts. U.S. Geological Survey Water-Resources Investigations Report 91-4034, pp.3-40.
Van der Kamp, G. 1976. Determining aquifer transmissivity by means of well response tests: The underdamped case, Water Resour. Res. 12, no.1: 71-77
Wylie, C. R., and L. C. Barrett, 1982. Advanced Engineering Mathematics, 5th edition, McGraw-Hill, Inc.
Zlotnik, V., 1994.Interpretation of slug and packer tests in anisotropic aquifers, Ground Water 35,no.5: 761.
Zlotnik, V. A., and V. L. McGuire, 1998. Multi-level slug tests in highly permeable formations, 1, Modification of the Springer-Gelhar (SG) model, J. Hydrol 204: 271-282.
Zurbuchen, B. R., V. A. Zlotnik, and J. J. Butler Jr., 2002. Dynamic interpretation of slug test in highly permeable aquifers. Water Resour. Res. 38, no.3: 10.1029/2001 WR000354.