跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐晟熏
Cheng-hsun Hsu
論文名稱: 資料探勘(Data mining)-在人力資源管理上的分析與應用
指導教授: 鄭晉昌
Jihn-chang Jehng
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 人力資源管理研究所
Graduate Institute of Human Resource Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 人力資源管理資料探勘決策樹
外文關鍵詞: human resource management, data mining, decision tree
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在人力資源領域當中資料探勘的分類技術尚未受到廣泛的注目與應用。因此,豐富的HR資料也缺乏更為深入的應用。在知識管理流程當中,資料探勘技術提供了一個在大量資料內粹取與挖掘具有價值與意義的知識。而這樣的一項技術將會是人力資源專家在面對困難且未知的人才篩選的一項有利工具,過去人才篩選依賴多項因素,像是經驗、知識、績效與判斷能力等,事實上這樣的篩選條件已經不足夠.因為在這個知識經濟與VUCA的商業環境之下,今天促成某個人坐上某個位置的因素有可能隔天就不適用,但在人才管理當中,產出的定義是確保正確的人在正確的工作崗位上。綜合上述因素,在人才管理領域要如何篩選人才並且預測人才未來的可能發展成了每一個組織的挑戰與問題。而本研究將應用資料探勘當中決策樹的技術進行資料分析,透過探勘的方式尋找出影響在職時間的關鍵因素。本研究透過K公司所提供的資料,將其進行決策樹分析,分析出影響員工在職時間的關鍵因素。


    The use of data mining technology in human resources management has yet not received widely attention. There is a lack of in-depth application of extensive HR data. In respect to the process of knowledge management (KM), data mining provides valuable and meaningful knowledge by digging out pieces of information in the batches of data. The technology will be a powerful tool for HR professionals in face of the difficult talent selection. In the past, the screening job depends on a number of factors: experience, knowledge, performance, ability to judge, and etc. In fact, the criteria are not enough in such knowledge-based economy and VUCA (Volatility, Uncertainty, Complexity, Ambiguity) business environment.
    Nowadays, the factors contributing to the speculation of one position may not apply to work the next morning. However, in talent management, the definition of output is to ensure that the right person is at the right place to work. Therefore, talent selection and the prediction of talent development have been future challenges and problems of each organization. The database of this study was provided by company K. The Data mining techniques of decision tree was applied to find out the key factors affecting employee tenure.

    目錄 第一章 研究動機與目的 1 第一節研究動機與背景 1 第二節研究目的 2 第二章文獻探討 3 第三章研究方法 16 第一節研究架構 16 第二節研究工具 19 第三節資料準備 21 第四章研究結果 32 第一節第一階段分析 33 第二節第二階段分析 47 第三節第三階段分析 60 第四節第四階段分析 71 第五節研究結果管理建議與管理意涵 83 第五章結論與建議 86 第一節研究結論 86 第二節研究改善與檢討 87 第三節未來應用與建議 88 第四節研究貢獻 89 第六章參考文獻 90

    中文文獻
    1. 吳復興(民93)。人力資源管理:理論分析與實務應用。台北:華泰。
    2. 陳玫婷(民96)。高科技產業人力資源招募甄選之研究。政治大學勞工研究所學位論文1-107。
    3. 呂奇傑、李天行、周宗穎、蕭舒涵, (民97)。應用資料探勘分類技術於人才甄選之研究。Journal of Data Analysis, 7(2), 1-27.
    4. 郭信宏(民97) 。應用資料探勘技術於面板檢測實證研究。中央大學工業管理研究所碩士在職專班學位論文, 1-53.
    5. 翁慈宗(民98)。資料探勘的發展與挑戰。科學發展期刊 (442), 34-37.
    英文文獻
    1. Al-Radaideh, Q. A., & Al Nagi, E. (2012). Using data mining techniques to build a classification model for predicting employees performance. International Journal of Advanced Computer Science and Applications, 3(2).
    2. Beckers, A. M., & Bsat, M. Z. (2002). A DSS classification model for research in human resource information systems. Information Systems Management, 19(3), 41-50.
    3. Beyer, M. A., & Laney, D. (2012). The importance of ‘big data’: a definition.Stamford, CT: Gartner.
    4. Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998).Discovering data mining: from concept to implementation. Prentice-Hall, Inc..
    5. Chien, C. F., & Chen, L. F. (2008). Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Expert Systems with applications, 34(1), 280-290.
    6. Cho, V., & Ngai, E. W. (2003). Data mining for selection of insurance sales agents. Expert systems, 20(3), 123-132.
    7. Dorian Pyle. (1999). Data Preparation for Data Mining. USA, San Francisco: Morgan Kaufmann Publishers, Inc..
    8. Dumbill, E. (2013). Making sense of big data. Big Data, 1(1), 1-2.
    9. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
    10. Hough, L. M., & Oswald, F. L. (2000). Personnel selection: Looking toward the future--Remembering the past. Annual review of psychology, 51(1), 631-664.
    11. Huang, L. C., Huang, K. S., Huang, H. P., & Jaw, B. S. (2004, June). Applying fuzzy neural network in human resource selection system. In Fuzzy Information, 2004. Processing NAFIPS'04. IEEE Annual Meeting of the (Vol. 1, pp. 169-174). IEEE.
    12. Jantan, H., Hamdan, A. R., & Othman, Z. A. (2009). Knowledge discovery techniques for talent forecasting in human resource application. World Academy of Science, Engineering and Technology, Penang, Malaysia, 803-811.
    13. Jantan, H., Hamdan, A. R., Othman, Z. A., & Puteh, M. (2010). Applying Data Mining Classification Techniques for Employee's Performance Prediction. InKnowledge Management 5th International Conference (KMICe2010) (pp. 645-652).
    14. Jantan, H., Hamdan, A. R., & Othman, Z. A. (2010). Classification and prediction of academic talent using data mining techniques. In Knowledge-Based and Intelligent Information and Engineering Systems (pp. 491-500). Springer Berlin Heidelberg.
    15. Jantan, H., Hamdan, A. R., & Othman, Z. A. (2010). Human talent prediction in HRM using C4. 5 classification algorithm. International Journal on Computer Science and Engineering, 2(08-2010), 2526-2534.
    16. Jantan, H., Hamdan, A. R., & Othman, Z. A. (2011). Data mining classification techniques for human talent forecasting. INTECH Open Access Publisher.
    17. Jantawan, B., & Tsai, C. F. (2013). The Application of Data Mining to Build Classification Model for Predicting Graduate Employment. arXiv preprint arXiv:1312.7123.
    18. Kirby, E., Dufner, D., & Palmer, J. (1998). An analysis of applying artificial neural networks for employee selection. AMCIS 1998 Proceedings, 27.
    19. Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META Group Research Note, 6.
    20. Liu, B., Xia, Y., & Yu, P. S. (2000, November). Clustering through decision tree construction. In Proceedings of the ninth international conference on Information and knowledge management (pp. 20-29). ACM.
    21. Ranjan, J., Goyal, D. P., & Ahson, S. I. (2008). Data mining techniques for better decisions in human resource management systems. International Journal of Business Information Systems, 3(5), 464-481.
    22. Sadath, L. (2013). Data Mining: A Tool for Knowledge Management in Human Resource. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2.
    23. Tso, G. K., & Yau, K. K. (2007). Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy,32(9), 1761-1768.
    24. Zhao, X. (2008). An empirical study of data mining in performance evaluation of HRM. In 2008 International Symposium on Intelligent Information Technology Application Workshops (pp. 82-85).

    參考書目
    1. 簡禎富、許嘉裕(2014)。資料挖礦與大數據分析 Data Mining & Big Data Analytics。出版商:前程文化事業有限公司。

    參考網站
    1. http://www-01.ibm.com/support/knowledgecenter/

    QR CODE
    :::