| 研究生: |
洪芮妘 Ruei-Yun Hung |
|---|---|
| 論文名稱: |
微波與毫米波相位陣列收發積體電路之研製 Design of Microwave and Millimeter-wave Phase Array Transceiver Integrated Circuits |
| 指導教授: |
張鴻埜
Hong-yeh Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 相位陣列 、振盪器 |
| 外文關鍵詞: | phase array, oscillator |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在於設計與研究微波及毫米波相位陣列收發積體電路。第一部份為槽孔天線及振盪器之設計。由於操作頻率提高,其基板所造成的損耗就會越大,藉由將天線與振盪器整合於同一晶片,使振盪器與天線相連接降低訊號損失,可增加天線的有效輻射強度。就整體而言,可降低損耗並縮小面積。第二部份為線性化放大器之設計。電晶體非線性效應主要來自三階非線性轉導(gm3)及閘極-源極電容(Cgs),藉由基底至源極的偏壓大小改變三階非線性轉導的位置,將兩顆具有正負三階非線性轉導峰值的電晶體並聯,消除三階非線性轉導。應用於放大器設計,其三階截斷點(IIP3)改善約6 dB,進而降低訊號失真並改善通訊品質。最後是相位陣列接收機之設計,其電路由放大器與正交調變器所構成,並藉由調整正交調變器的偏壓改變輸出訊號的相位,以達到相位陣列之需求。而此相位陣列接收機的架構易於拓展,其可利用功率結合器(Wilkinson combiner)將電路設計為4×1或8×1的相位陣列接收機。
In this thesis, the microwave and millimeter-wave (MMW) phase array transceiver integrated circuits are presented. First, the design of a slot antenna and a voltage controlled oscillator are proposed using a MMIC technology. The substrate loss is more and more high when the operation frequency is high. To enhance the radiation efficiency of the MMW transmitter, an antenna can be further integrated in the MMIC chip, and also the chip size and the loss are both reduced. Second, a 24-GHz amplifier by using a third-order transconductance (gm3) cancellation technique is presented. The linearity effect of the CMOS device is generally degraded by the gm3 and the gate-to-source capacitor. The characteristic of the gm3 can be adjusted by appling a dc bias to the bulk of the device. The cancellation of gm3 can be achived combining a negative peak gm3 transistor in parallel with a positive peak gm3 transistor. The measured input third-order intercept point (IIP3) is improved over 6 dB. Therefore, the distortion and the communication quality can be both improved. Finally, a phase array receiver, including a low noise amplifier and an IQ modulator, is proposed for the MMW applications. The phase can be controlled by adjusting the bias of the IQ modulator. The topology of the 2×1 receiver can be further extended to 4×1 or 8×1 phase array receiver with a Wilkinson power combiner.
[1] C. Cao, Y. Ding, X. Yang, J. J. Lin, H. T. Wu, A. K. Verma, J. Lin, F. Martin and K. K. O “A 24-GHz transmitter with on-chip dipole antenna in 0.13-?m CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1394-1402, June 2008.
[2] C. Lu, A. V. H. Pham, M. Shaw and C. Saint, “Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation ,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp. 2320-2328, Nov., 2007.
[3] S. Kang, B. Choi and B. Kim, “Linearity analysis of CMOS for RF application,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 972-977, Mar., 2003.
[4] K. H. Liang, C. H. Lin, H. Y. Chang and Y. J. Chan, “A new linearization technique for CMOS RF mixer using third-order transconductance cancellation,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 350-352, May, 2008.
[5] J. Rogers and C. Plett, “Radio Frequency Integrated Circuit Design, ” Artech House, 2003.
[6] 杜至庸, “ 線性化射頻功率放大器之數位基頻預失真技術之研究 A study of digital baseband predistortion technique for linearizing RF power amplifiers, ” 國立中山大學電機工程研究所碩士論文, 民國96年七月.
[7] 梁恭豪,“ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統 High linearity and low-power RF CMOS mixers for wireless communication, ” 國立中央大學電機工程研究所博士論文, 民國97年九月.
[8] C. Karnfelt, P. Hallbjorner, H. Zirath and A. Alping, “Hign gain active microstrip antenna for 60-GHz WLAN/WPAN applicaion,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2593-2602, June, 2006.
[9] I-J. Chen, H. Wang, P. Hsu, “A V-band quasi-optical GaAs HEMT monolithic integrated antenna and receiver front-end,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no.12, pp. 2461-2468, Dec. 2003.
[10] C.-H. Wang, Y.-H. Cho, C.-S. Lin, H. Wang, C.-H. Chen, D.-C. Niu, J. Yeh, C.-Y. Lee, and J. Chern, “A 60GHz transmitter with integrated antenna in 0.18μm SiGe BiCMOS Technology,” 2006 International Solid-State Circuit Conference, San Francisco, Feb. 2006, pp. 659-668.
[11] H. Hashemi, X. Guan, A. Komijani and A. Hajimiri, “A 24-GHz SiGe phased-array receiver-LO phase-shifting approach,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 614-626, Feb. 2005.
[12] A. Babakhani, X. Guan, A. Komijani, A. Natarajan and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: receiver and antennas,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2795-2806, Dec. 2006.
[13] M. Tutt, D. Pavlidis, G. I. Ng, M. Weiss and J. L. Cazauxt, “Monolithic Integrated Circuit Applications of InGaAs/InAlAs HEMTs,” 1988 Gallium Arsenide Integrated Circuits (GaAs IC) Symposium, pp. 293-296, Nov. 1988.
[14] Raymond S. Pengelly, “Early GaAs FET monolithic microwave integrated circuit developments for radar applications at Plessey, UK,” 2008 International Microwave Symposium Digest, pp. 827-830, June 2008.
[15] T. H. Oxley, K. J. Ming, G. H. Swallow, B. J. Climer and M. J. Sisson, “Hybrid Microwave Integrated Circuits For Millimeter Wavelengths,” 1972 International Microwave Symposium Digest, pp. 224-226, May 1972.
[16] K. Tsukamoto, and et al, “Development of gigabit millimeter-wave broadband wireless access system -system overview,” 2003 Asia Pacific Microwave Conference Proceeding, vol. 2, pp. 957-960.
[17] E. A. Monastyrev, O. Y. Malakhovskiy, S. L. Kevruh, and M. A. Korablin, “71–76 GHz wireless bridge for ethernet networks,” in Proc.15th Int. Crimean Conf. Microw. Telecommun. Technol., Oct. 2005, pp.78–79.
[18] Charles W. T. Nicholls, “Extension of the frequency range of ceramic resonator oscillators using push-push circuit topology,” 2001 IEEE International Frequency Control Symposium and PDA Exhibition, pp. 728-733.
[19] PPC-100 Series Wireless LAN Bridge Brochure, ElvaLin LLC Corporation,Solon, OH, Jun. 2004.
[20] L. H. Chu, E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, “2 V-operated InGaP-AlGaAs-InGaAs enhancement-mode pseudomorphic HEMT,” IEEE Electron Device. Lett. vol. 26, no. 2, pp. 53-55, Feb. 2005.
[21] T. Chong, “A low-noise, high-linearity balanced amplifier in enhancement-mode GaAs pHEMT technology for wireless base-stations,” 2005 European Gallium Arsenide and Other Semiconductor Application Symposium, Oct. 2005, pp.461-464.
[22] K. W. Kobayashi, “A novel e-mode PHEMT linearized Darlington cascade amplifier,” 2006 IEEE CSIC Symposium Digest, Oct. 2006, pp.153-156.
[23] WIN Semiconductors, “0.5 ?m InGaAs PHEMT enhancement / depletion-model device (E/D-mode) device model handbook,” ver.1.0.1, May, 2006.
[24] G. Gonzales, Microwave Transistor Amplifiers Analysis and Design, 2nd ed. Upper Saddle River, NJ:Prentice-Hall, 1997, ch. 5.
[25] 邱景鴻,“應用於毫米波射頻接收機前端積體電路之研製 Design and Implementation of RF Receiver Front-end Integrated Circuits for Millimeter-wave Applications, ” 國立中央大學電機工程研究所碩士論文, 民國95年六月.
[26] K. W. Kobayashi, A. K. Oki, L. T. Tran, J. C. Cowles, A. G. Aitken, F. Yamada, T. R. Block and D. C. Streit, “A 108-GHz InP-HBT Monolithic Push-Push VCO with Low Phase Noise and Wide Tuning Bandwidth,” IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1225-1232, Sept. 1999.
[27] 張傳生,數位通訊原理,初版,儒林書局,臺北市,民國八十一年。
[28] 賈志靜,數位類比通信系統,初版,全華書局,臺北市,民國八十八年。
[29] Z. Lao, J. Jensen, K. Guinn and M. Sokolich, “80-GHz Differential VCO in InP SHBTs,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 407-409, Sept. 2004.
[30] R. Wanner, H. Schafer, R. Lachner, G. R. Olbrich and P. Russer, “A Fully Integrated SiGe Low Phase Noise Push-Push VCO for 82 GHz,” European Gallium Arsenide and Other Semiconductor Application Symposium, pp. 249-252, Oct. 2005.
[31] H. Li, H. M. Rein, T. Suttorp and J. Bock, “Fully integrated SiGe VCOs with powerful output buffer for 77-GHz automotive radar systems and applications around 100 GHz,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1650-1658, Oct. 2004.
[32] W. Winkler, J. Brorngraber, B. Heinemann and P. Weger, “60 GHz and 76 GHz oscillators in 0.25 ?m SiGe: C BiCMOS,” in Proc. Int. Solid-State Circuit Conf., San Francisco, CA, Feb. 2003, pp.454-455.
[33] F. Lenk, M. Schott, J. Hilsenbeck, J. Wurfl and W. Heinrich, “Low Phase-Noise Monolithic GaInP/GaAs-HBT VCO for 77 GHz ,” IEEE MTT-S Digest, vol. 2, pp. 8-13, June 2003.
[34] N. Zhang and K. K. O, “94 GHz Voltage Controlled Oscillator With 5.8% Tuning Range in Bulk CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 548-550, Aug., 2008.
[35] Y. Baeyens, C. Dorschky, N.Weimann, Q. Lee, R. Kopf, G. Georgiou, J. P. Mattia, R. Hamm and Y. K. Chen, “Compact InP-Based HBT VCOs with a Wide Tuning Range at W- and D-Band,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2403-2408, Dec., 2000.
[36] C. Cao and K. K. O, “A 140-GHz Fundamental Mode Voltage-Controlled Oscillator in 90-nm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 555-557, Oct., 2006.
[37] E. Seok, C. Cao, D. Shim, D. J. Arenas, D. B. Tanner, C. M. Hung and K. K. O, “A 410 GHz CMOS push-push oscillator with an on-chip patch antenna,” in Proc. Int. Solid-State Circuit Conf., San Francisco, CA, Feb. 2008, pp.472-473.
[38] E. Laskin, M. Khanpour, R. Aroca, K. W. Tang, P. Garcia and S. P. Voinigescu, “A 95 GHz receiver with fundamental-frequency VCO and static frequency divider in 65 nm digital CMOS,” in Proc. Int. Solid-State Circuit Conf., San Francisco, CA, Feb. 2008, pp. 180-181.
[39] R. Weber, M. Kuri, M. Lang, A. Tessmann, M. S. Eggebert and A. Leuther, “A PLL-Stabilized W-Band MHEMT Push-Push VCO with Integrated Frequency Divider Circuit,” IEEE MTT-S Digest, pp. 653-656 , June 2007.
[40] R. E. Makon, R. Driad, K. Schneider, R. Aidam, M. Schlechtweg and G. Weimann, “Fundamental W-Band InP DHBT-Based VCOs With Low Phase Noise and Wide Tuning Range,” IEEE MTT-S Digest, pp. 649-652 , June 2007.
[41] P. C. Huang, R. C. Liu, H. Y. Chang, C. S. Lin, M. F. Lei, H. Wang, C. Y. Su and C. L. Chang, “A 131 GHz push-push VCO in 90-nm CMOS technology,” in IEEE RFIC Symp. Dig., Long Beach, CA, Jun. 2005, pp. 131-134.
[42] Z. M. Tsai, C. S. Lin, C. F. Huang, J. G. J. Chern and H. Wang, “A fundamental 90-GHz CMOS VCO using new ring-coupled quad,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 226-228, Mar. 2007.
[43] H.-Y. Chang and H. Wang, “A 98/196 GHz low phase noise voltage controlled oscillator with a mode selector using a 90 nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 170-172, Mar. 2009.
[44] P. C. Huang, M. D. Tsai, G. D. Vendelin, H. Wang, C. H. Chen and C. S. Chang, “A Low-Power 114-GHz Push-Push CMOS VCO Using LC Source Degeneration,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1230-1238, June. 2007.
[45] C. Cao and K. K. O, “A 90-GHz voltage-controlled oscillator with a 2.2-GHz tuning rand in a 130-nm CMOS technology,” in VLSI Symp. Dig., Kyoto, Japan, Jun. 2005, pp. 242-243.
[46] K. Chang, RF and Microwave Wireless Systems, John Wiley & Sons, 2000.
[47] 黃胤年,電波傳播與天線,初版,五南書局,臺北市,民國九十二年。
[48] W. L. Stutzman and G. A. Thiele, Antenna theory and design, 2nd ed. John Wiley & Sons, 1998.
[49] X. Chen, W. Zhang, R. Ma, J. Zhang and J. Gao, “Ultra-wideband CPW-fed antenna with round corner rectangular slot and partial circular patch,” IET Microwaves Antennas Propagat., vol. 1, pp. 847-851, Aug. 2007.
[50] P. B. Kenington, Hing-Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[51] B. Razavi, RF microelectronics, Upper Saddle River, NJ:Prentice-Hall, 1998.
[52] 拉薩維(Behzad Razavi)著,類比CMOS積體電路設計,李俊霣譯,麥格羅希爾出版:滄海總經銷,臺北市,民國九十一年。
[53] C. Lu, A. V. H. Pham, M. Shaw and C. Saint, “Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistor and Capacitance Compensation,” IEEE Trans. Microw. Theory Tech.,vol. 55, no. 11, pp. 2320–2328, Nov. 2007.
[54] J. D. Jin and S. S. Hsu, “A 0.18-mm CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, pp.1047-1054, May 2007.
[55] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18?m CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448-450, July, 2005.
[56] Y. L. Wei, S. S. H. Hsu and J. D. Jin, “A low-power low-noise amplifier for K-band applications”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116-118, Feb. 2009.
[57] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang and M. F. Chang, “K-Band low-noise amplifiers using 0.18?m CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004.
[58] L. M. Franca-Neto, B. A. Bloechel and K. Soumyanath, “17 GHz and 24 GHz LNA Designs based on Extended-S-parameter with Microstrip –on –Die 0.18mm Logic CMOS Technology,” in IEEE, vol. 50, no. 9, pp. 149-152, Sep. 2003.
[59] X. Guan and A. Hajimiri, “A 24GHz CMOS front-end”, IEEE J. Solid- State Circuits, vol. 39, no. 2, pp. 368–373, Feb. 2004.
[60] H.-Y. Liao, K. C. Liang and H. K. Chiou, “A compact and low power consumption K-band differential low noise amplifier design using transformer feedback technique”, Proc. 19th Asia-Pacific Microwave Conf. (APMC 2007),Bangkok, Thailand, 11-14 Dec. 2007, pp. 571–574.
[61] H.-Y. Chang, P. S. Wu, T. W. Huang, H. Wang, C. L. Chang and J. G. J. Chern, “Design and Analysis of CMOS Broad-Band Compact High-Linearity Modulator for Gigabit Microwave/Millimeter-Wave Applications,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006.
[62] A. E. Ashtiani, S. I. Nam, A. D. Espona, S. Lucyszyn and I. D. Robertson, “Direct multilevel carrier modulation using millimeter-wave balanced vector modulators,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2611-2619, Dec. 1998.
[63] H.-Y. Chang, “Design of broadband highly linear IQ modulator using a 0.5-mm E/D-PHEMT process for willimeter-wave applications,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 491-493, July 2008.