| 研究生: |
陳冠良 Kuan-Liang Chen |
|---|---|
| 論文名稱: |
電磁散射模型於粗糙表面之研究 Modeling of Electromagnetic Wave Scattering for Rough Surface |
| 指導教授: |
任玄
Shane Ren |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 粗糙表面 、面散射 、土壤含水量 、先進積分方程模型 、斑駁雜訊特性 、極化 |
| 外文關鍵詞: | rough surface, surface scattering, soil moisture, AIEM, speckle properties, polarization |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
理論模型於粗糙面散射之研究近年來已有許多發展和突破,本研究將專注於探討粗糙面之散射問題,用數值模型和物理模型分析粗糙面散射特性以及了解其散射機制;散射特性分析包含:斑駁雜訊的統計特性驗證、互異性和對稱性假設的驗證、和分類法的參數探討等...。本研究將推導多次散射項來更完整的描述粗糙面散射機制。為了讓理論模型能更貼近真實的量測,天線場型的影響也進行分析和討論。
本研究將利用NMM3D模型,計算全極化的相干矩陣(Coherence matrix),將散射模型結果與微波遙測觀測數據結合及驗證。在能量強度和斑駁雜訊(speckle)的統計特性上,模型與量測資料驗證結果相當一致;對於極化分解理論而言,從散射模型計算全偏極的相干散射矩陣再推算極化分解理論的參數(H/α/A),藉由散射模型可以更系統化的分析不同地表參數對應於極化分解理論參數上的改變。
相較於數值模型而言,AIEM模型經由物理假設簡化後,以代數形式的數學表達式呈現,擁有更快的計算速度以及完整的散射機制描述等優點。然而在原模型中為了推導方便只考慮單次散射的情況而忽略了多次散射項,使得散射機制的描述不完整。因此,本研究重新推導多重散射項以更完整的描述粗糙面散射機制。另一部分,有關於AIEM的改進是『弗内耳反射係數轉換問題』,弗内耳反射係數為局部入射角(local incident angle)及介電常數的函數,一般於地表起伏很大或很小時,局部入射角是可以由鏡射角(specular angle)或入射角(incident angle)近似。除此兩極端地表起伏之外的問題必須透過建立轉換關係式來得到適合的弗内耳反射係數;本研究在原先的理論基礎上,重新推導新的實部和虛部的表示式,使得在損耗介質的散射特性描述可以更加精確。而最新發表的AIEM模型的模擬結果與數值模型(MoM)和實驗量測數據的驗證也在本文中進行討論。
最後,為了使模型能更加貼近實際的量測情況。因此,本研究加入了天線場型的影響,經過整理及推演出新的模型,可以更精確的分析真實量測情況下的散射結果。
In this dissertation, the scattering properties for rough surface are introduced for both statistical and physical models. The statistical properties of rough surface scattering are studied by using NMM3D simulation data. A physical model of rough surface scattering names Advance Integral Equation Model (AIEM) is also investigated. To describe the complete scattering mechanism including single and multiple scattering, new expressions for multiple scattering are considered. The antenna pattern in the derivation of AIEM is also included for further achieving the truly measurements.
Firstly, the statistical properties of rough surface scattering are investigated by using NMM3D simulation data. We have performed simulations with the radar scattering matrix (coherence matrix) up to 958 independent realizations by using NMM3D model. The polarimetric speckle statistics (amplitude and phase difference) are then calculated based on the simulated scattering matrices, followed by the comparison with theoretical distributions. For fully developed speckle from the homogeneous rough surface, the results are examined and validated to ensure the simulated data quality is good in terms of polarimetric properties. The results show that the characterization of polarimetric descriptors for rough surface is well presented.
Next, the complete Kirchhoff field coefficient, complementary field coefficient and the traditional approximations of the Fresnel reflection coefficients are introduced in AIEM. The expressions for single scattering of AIEM are also derived. The comparisons of the bistatic scattering behavior by using the improved AIEM is in excellent agreement with numerical simulation and measured data, in terms of angular, frequency and polarization dependences. Based on this model, the transition model for AIEM is also proposed to improve the simulation accuracy. Validation by comparisons of the numerical method and experimental data gave good agreement.
Since the AIEM model has been developed to cover a wide range of surface roughness, it thus allows us to study the scattering properties of multiple terms in detail. The new expressions for multiple scattering of AIEM are derived. For easier explanation of the scattering mechanism, the new expressions include: upward and downward propagation waves in the medium 1 and 2 regions.
Finally, extension work to improve the model accuracy is reported in more detail. To consider the general bistatic scattering, antenna patterns of the transmitter and receiver are accounted for their variations of overlapping illuminated area covering the targets of interest when the bistatic scattering configurations are changed. For example, changing the incident angle and scattering angle, the common projected area is also changed. Hence, the scattering coefficient that is normalized by the illuminated area must be calculated accordingly.
[1] J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, and Y Kuga, "Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: Comparison of Monte Carlo simulations with experimental data," IEEE Transactions on Antennas and Propagation, vol. 44, pp748-756, May, 1996.
[2] L. Zhou, L. Tsang, V. Jandhyala, Qin Li and C. H. Chan, "Emissivity simulations in passive microwave remote sensing with 3-dimensional numerical solutions of Maxwell equations", IEEE Transactions on Geoscience and Remote Sensing, vol. 42, pp. 1739-1748, 2004.
[3] S. Huang, L. Tsang, E. G. Njoku, and K.S. Chen, " Backscattering Coefficients, Coherent Reflectivities, and Emissivities of Randomly Rough Soil Surfaces at L-Band for SMAP Applications Based on Numerical Solutions of Maxwell Equations in Three-Dimensional Simulations," IEEE Transactions on Geoscience and Remote Sensing, vol.48, no.6, pp.2557-2568, June 2010.
[4] S. Huang, and L. Tsang, " Electromagnetic scattering of randomly rough soil surfaces based on numerical solutions of Maxwell equations in 3 dimensional simulations using a hybrid UV/PBTG/SMCG method," IEEE Transactions on Geoscience and Remote Sensing, vol. 50, pp. 4025-4035 , 2012.
[5] D. Xueyang and M. Moghaddam. "3-D Vector Electromagnetic Scattering From Arbitrary Random Rough Surfaces Using Stabilized Extended Boundary Condition Method for Remote Sensing of Soil Moisture." IEEE Transactions on Geoscience and Remote Sensing, vol.50, pp.87-103, 2012.
[6] H. Lawrence, F. Demontoux, J. Wigneron, P. Paillou, Tzong-Dar Wu, Y. H. Kerr. "Evaluation of a Numerical Modeling Approach Based on the Finite-Element Method for Calculating the Rough Surface Scattering and Emission of a Soil Layer. " IEEE Geoscience and Remote Sensing Letters, vol.8, pp.953-957, 2011.
[7] Y. Oh, K. Sarabandi, F. T. Ulaby. "An empirical model and an inversion technique for radar scattering from bare soil surfaces." IEEE Transactions on Geoscience and Remote Sensing, vol.30, pp.370-381, 1992.
[8] Y. Oh, K. Sarabandi, F. T. Ulaby. "Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces." IEEE Transactions on Geoscience and Remote Sensing, vol.40, pp.1348-1355, 2002.
[9] P. C. Dubois, J. vanZyl, T. Engman. "Corrections to "Measuring Soil Moisture with Imaging Radars". IEEE Transactions on Geoscience and Remote Sensing, vol.33, pp.1340, 1995.
[10] S. O. Rice, "Reflection of electromagnetic waves from slightly rough surfaces." Communications on Pure and Applied Mathematics, vol.4, pp.351-378, 1951.
[11] A. Voronovich , "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces." Waves in Random Media, vol.4, pp.337-367, 1994.
[12] T.-D. Wu, K.-S. Chen, J. Shi, H.-W. Lee, A. K. Fung. "A Study of an AIEM Model for Bistatic Scattering From Randomly Rough Surfaces." IEEE Transactions on Geoscience and Remote Sensing, vol.46, pp.2584-2598, 2008.
[13] A. K. Fung, Q. Li and K. S. Chen, "Backscattering from a randomly rough dielectric surface, " IEEE Transactions on Geoscience and Remote Sensing, vol. 30, no. 2, pp.356-369, 1992.
[14] K. S. Chen, A. K. Fung and D. E . Weissman, “A backscattering model for sea surfaces,” IEEE Transactions on Geoscience and Remote Sensing, vol. 30, no. 4, pp. 811-817, 1992.
[15] A. K. Fung, Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, MA, 1994.
[16] S. Allain, L. Ferro-Famil, E. Pottier, and I. Hajnsek, “Extraction of surface parameters from multi-frequency and polarimetric SAR data,” IEEE Transactions on Geoscience and Remote Sensing, 2002, vol. 1, pp. 426–428.
[17] I. Hajnsek, E. Pottier, and S. R. Cloude, “Inversion of surface parameters from polarimetric SAR,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 4, pp. 727–745, Apr. 2003.
[18] I. Hajnsek, T. Jagdhuber, H. Schon, and K. P. Papathanassiou, “Potential of estimating soil moisture under vegetation cover by means of Pol- SAR,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 2, pp. 442–454, Feb. 2009.
[19] T. Jagdhuber, I. Hajnsek, A. Bronstert, and K. P. Papathanassiou, “Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 4, pp. 2201–2215, Apr. 2013.
[20] J. D. Ballester-Berman, F. Vicente-Guijalba, and J. M. Lopez-Sanchez, “Polarimetric SAR model for soil moisture estimation over vineyards at C-band,” Progress In Electromagnetics Research, vol. 142, pp. 639–665, 2013.
[21] D. J. JACKSON, Classical Electrodynamics, John Willey & Sons, New York, 1975.
[22] S. R. Cloude, Group theory and polarization algebra, OPTIK, 75(1), 26–36, 1986.
[23] S. R. Cloude, and E. Pottier, "A review of target decomposition theorems in radar polarimetry", IEEE Transaction on Geoscience and Remote Sensing, 34, 2, March 1996.
[24] S. R. Cloude, and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR", IEEE Transaction on Geoscience and Remote Sensing, 35, 1, January 1997.
[25] S. R. Cloude, and E. Pottier, “An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, Jan. 1997.
[26] J. S. Lee, M. R. Grunes, T. L. Ainsworth, L. J. Du, D. L. Schuler, and S. R. Cloude, “Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 5, Sep. 1999.
[27] J. S. Lee and E. Pottier, Polarimetric Radar Imaging : From Basics to Applications. Boca Raton, FL, USA : CRC Press, 2009.
[28] J. S. Lee, K.W. Hoppel, S.A. Mango and A. R. Miller, "Intensity and Phase Statistics of Multi-look Polarimetric and Interferometric SAR Imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 5, pp. 1017-1028, 1994.
[29] J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, and Y Kuga, "Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: Comparison of Monte Carlo simulations with experimental data," IEEE Transactions on Antennas and Propagation, vol. 44, pp748-756, May, 1996.
[30] L. Zhou, L. Tsang, V. Jandhyala, Qin Li and C. H. Chan, "Emissivity simulations in passive microwave remote sensing with 3-dimensional numerical solutions of Maxwell equations", IEEE Transactions on Geoscience and Remote Sensing, vol. 42, pp. 1739-1748, 2004.
[31] D. Entekhabi Ed., SMAP Handbook, Jet Propulsion Laboratory, 2014.
[32] K. S. Chen, T. D. Wu, L. Tsang, Q. Li, J. C. Shi, and A. K. Fung, “Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 1, pp. 90–101, Jan. 2003.
[33] S. R. Cloude, Polarisation: Applications in Remote Sensing, Oxford University Press, 2009.
[34] J. S. Lee, T. L. Ainsworth, J. P. Kelly, and C. Lopez-Martinez, “Evaluation and bias removal of multilook effect on entropy/alpha/anisotropy in polarimetric SAR decomposition,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, pp. 3039–3052, Oct. 2008.
[35] P. Beckman and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon press, Oxford, 1963.
[36] F. T. Ulaby, R. K. Moore and A. K. Fung, “Microwave Remote Sensing”, vol. 2, Artech House, Norwood, MA, 1982.
[37] A. G. Voronovich, Wave Scattering from Rough Surfaces, Springer-Verlag, Berlin, 1994.
[38] L. Tsang and J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics, John Wiley & Sons, 2001.
[39] A. K. Fung and K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House, Norwood, MA, 2009.
[40] C. Y. Hsieh, A. K. Fung, G. Nesti, G., A. Sieber, and P. Coppo, “A further study of the IEM surface scattering model,” IEEE Transactions on Geoscience and Remote Sensing, vol.35, 901–909, 1997.
[41] K. S. Chen, Tzong-Dar Wu, Mu-King Tsay, Adrian K. Fung, “A note on the multiple scattering in an IEM model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no.1, pp.249-256, 2000.
[42] T. D. Wu, K.S. Chen, J. C. Shi, and A. K. Fung, "A transition model for the reflection coefficient in surface scattering," IEEE Transactions on Geoscience and Remote Sensing, vol.39, no.9, pp.2040-2050, 2001.
[43] J. Álvarez-Pérez, “An extension of the IEM/IEMM surface scattering model,” Waves in Random Media, vol.11, no.3, pp.307–329, 2001.
[44] A. K. Fung, W. Y. Liu, K. S. Chen, and M. K. Tsay, “An improved IEM model for bistatic scattering,” Journal of Electromagnetic Wave and Applications, vol. 16, no.5, pp. 689-702, 2002.
[45] T. D. Wu and K. S. Chen, “A Reappraisal of the Validity of the IEM Model for Backscattering from Rough Surfaces,” IEEE Transactions on Geoscience and Remote Sensing, vol.42, no.8, pp.743-753, 2004.
[46] A. K. Fung and K. S. Chen, "An update on IEM surface backscattering model," IEEE Geoscience and Remote Sensing Letters, vol.1, no.2, pp.75-77, 2004.
[47] Y. Du, “A new bistatic model for electromagnetic scattering from randomly rough surfaces,” Waves Random Complex Media, vol.18, no.1, pp. 109–128, 2008.
[48] T. D. Wu, K.S. Chen, J. C. Shi, H. W. Lee and A. K. Fung, “A study of AIEM Model for Bistatic Scattering from Randomly Surfaces,” IEEE Transactions on Geoscience and Remote Sensing, vol.46, no.9, pp.2584-2598, 2008.
[49] J. L. Álvarez-Pérez, “The IEM2M rough-surface scattering model for complex-permittivity scattering media,” Waves in Random and Complex Media, vol.22, no.2, pp.207-233, 2012.
[50] Poggio A. J., Miller E. K. “Integral Equation solution of Three Dimensional Scattering Problems”, Computer Techniques for Electromagnetics, R. Mittra ed., Pergamon, New York, 1973.
[51] Li Z. nd A.K. Fung, “A Reformulation of the Surface Field Integral Equation,” Journal of Electromagnetic Waves and Application, vol. 5, pp. 195–203, 1991.
[52] Q. Li, J. C. Shi, and K. S. Chen “A Generalized Power Law Spectrum and its Applications to the Backscattering of Soil Surfaces Based on the Integral Equation Model,” IEEE Transactions on Geoscience and Remote Sensing, vol.40, no.2, pp.271-281, 2002.
[53] H. T. Ewe, J. T. Johnson, K. S. Chen, “A comparison study of the surface scattering models and numerical model,” IGARSS '01, vol.6, pp. 2692 -2694, 2001.
[54] G. M. Macelloni, G. Nesti, P. Pampaloni, D. Tarchi, and S. Lolli “Experimental validation of surface scattering and emission models,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 1, pp.459-469. 2000.
[55] R. G. Smith, “Geometrical shadowing of a randomly rough surfaces,” IEEE Transactions on Antennas Propagation, vol. AP-15, pp.668-671,1967.
[56] A. K. Fung and H. J. EOM, "Coherent Scattering of a Spherical Wave from an Irregular Surface", IEEE Transactions on Antennas Propagation, vol AP-31, no. 1, JAN 1983.
[57] M. W. Spencer, Chialin Wu, and D. G. Long, " Improved Resolution Backscatter Measurements with the SeaWinds Pencil-Beam Scatterometer. " IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 1, JAN 2000.
[58] Erwan Motte, Philippe Ricaud, Benjamin Gabard, Mathieu Niclas, and Fabrice Gangneron, " A 22-GHz Mobile Microwave Radiometer (MobRa) for the Study of Middle Atmospheric Water Vapor." IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, Oct 2008.
[59] Michele Galletti, and Dusan S. Zrnic, " Bias in Copolar Correlation Coefficient Caused by Antenna Radiation Patterns." IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 6, JUNE 2011.
[60] E. Thorsos, "The Validity of the Kirchhoff Approximation for Rough Surface Scattering Using a Gaussian Roughness Spectrum." J. Acoust. Soc. Am., 83(1), 78-92, Jan. 1988.
[61] E. Thorsos and D. Jackson, "Studies of Scattering Theory Using Numerical Methods," Waves Random Media, 1, pp. 165-190, July 1991.
[62] F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, pp.224~231, Pergamon Press, USA, 1979.
[63] Gary B. Hughes and Mohcine Chraibi, “Calculating ellipse overlap areas”, Journal of Computational Physics, pp. 85, 2011.