跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王韜
Tao Wang
論文名稱: 以卡爾曼濾波器達成之蛇型機器人狀態監測與行動策略
Snake Robot Motion Strategy with Kalman Filter
指導教授: 羅吉昌
Lo, Ji-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 蛇型機器人扭矩接觸感測卡爾曼濾波器側行
外文關鍵詞: Snake Robot, Torque Contact Detection, Kalman Filter, Sidewinding
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討蛇型機器人的行動策略,以現實中蛇的"側行式(sidewinding)"行動模式為原型,探討其行動原理並分析該運動模式的數學模型作為行動策略的基礎,再以 MIT 於2018年前後發表的" Cheetah 3 "機器人中不依賴視覺的"接觸檢測演算法(contact detection algorithm)"為啟發,透過電流感測器檢測流經馬達的電流大小,以卡爾曼濾波器推估其所受扭矩,達成接觸感測的狀態回授,以求進一步改善其行動效率以及對周遭環境的適應。


    This thesis mainly discusses the action strategy of the snake-like robot. Taking the "sidewinding" action of the snake in reality as the prototype, it discusses its action principle and analyzes the mathematical model of the movement mode as the basis of the action strategy. Inspired by the "contact detection algorithm" on the "Cheetah 3" that does not rely on vision, the current flowing through the motor is detected by the current sensor, and the Kalman filter is used to estimate the torque it receives to achieve the state feedback of contact sensing, in order to further improve its operational efficiency and adaptation to the surrounding environment.

    一、緒論............................................ 1 1.1 背景介紹........................................ 1 1.2 研究目的與動機.................................. 1 1.3 文獻回顧........................................ 2 1.4 論文架構........................................ 3 二、硬體元件與硬體架構................................5 2.1 硬體架構........................................ 5 2.1.1 頭部支架...................................... 6 2.1.2 軀幹關節...................................... 7 2.2 硬體元件........................................ 9 2.2.1 主控處理元件.................................. 9 2.2.2 控制元件及馬達................................ 11 2.2.3 感測模組..................................... 13 2.2.4 電源供應..................................... 14 三、狀態監測與回授.................................. 17 3.1 伺服馬達扭矩-電流特性檢測........................ 17 3.1.1 實驗架構..................................... 17 3.1.2 實驗結果..................................... 21 3.2 卡爾曼濾波器之數學建模.......................... 23 3.2.1 卡爾曼濾波器................................. 23 3.2.2 數學模型建立................................. 26 四、行動策略....................................... 30 4.1 蛇側行運動..................................... 30 4.2 運動模型....................................... 32 4.3 MATLAB 模擬.................................... 34 4.4 基於狀態回授之行動策略.......................... 37 五、控制流程及實驗結果.............................. 40 5.1 控制流程....................................... 40 5.1.1 蛇側行函式................................... 40 5.1.2 跨步調整..................................... 42 5.2 實驗測試....................................... 45 5.2.1 實驗環境..................................... 45 5.2.2 實驗結果..................................... 47 六、總結........................................... 50 6.1 結論.......................................... 50 6.2 未來展望....................................... 50 參考文獻........................................... 52

    1. Peters, J. A. and Wallach, . Van (2021, September 10). snake.
    Encyclopedia Britannica. https://www.britannica.com/animal/snake

    2. Ficht, G., Behnke, S. Bipedal Humanoid Hardware Design: a
    Technology Review. Curr Robot Rep 2, 201–210 (2021). https://doi.org/
    10.1007/s43154-021-00050-9

    3. S. Feng, E. Whitman, X. Xinjilefu and C. G. Atkeson, ”Optimization
    based full body control for the atlas robot,” 2014 IEEE-RAS International
    Conference on Humanoid Robots, 2014, pp. 120-127, doi:
    10.1109/HUMANOIDS.2014.7041347.

    4. Kuindersma, S., Deits, R., Fallon, M. et al. Optimization-based locomotion
    planning, estimation, and control design for the atlas humanoid
    robot. Auton Robot 40, 429–455 (2016). https://doi.org/10.1007/s10514-
    015-9479-3

    5. Bledt, Gerado et al. ”MIT Cheetah 3: Design and Control of a
    Robust, Dynamic Quadruped Robot.” IEEE International Conference on
    Intelligent Robots and Systems, October 2018, Madrid Spain, Institute of
    Electrical and Electronics Engineers, January 2019. © 2018 IEEE

    6. Bento Filho, Antônio and Amaral, Paulo and Miglio, Gianluca.
    (2010). A four legged walking robot with obstacle overcoming capabilities.
    3rd International Conference on Human System Interaction, HSI’2010
    - Conference Proceedings. 374-379. 10.1109/HSI.2010.5514543.

    7. Kurkutlu, Omer and Mchunu, Mlondi and SHBOOR, EZZADDIN.
    (2021). Quadruped robot - Four Legged Robot. 10.13140/RG.2.2.26784.92161.

    8. Naclerio, N. D., Karsai, A., Murray-Cooper, M., Ozkan-Aydin, Y.,
    Aydin, E., Goldman, D. I., and Hawkes, E. W. (2021). Controlling subterranean
    forces enables a fast, steerable, burrowing soft robot. Science
    Robotics, 6(55), eabe2922.

    9. Mu, Z., Wang, H., Xu, W., Liu, T., & Wang, H. (2017). Two types
    of snake-like robots for complex environment exploration: Design, development,
    and experiment. Advances in Mechanical Engineering. https://
    doi.org/10.1177/1687814017721854

    10. A. Kakogawa, T. Kawabata and S. Ma, ”Plate-Springed Parallel
    Elastic Actuator for Efficient Snake Robot Movement,” in IEEE/ASME
    Transactions on Mechatronics, vol. 26, no. 6, pp. 3051-3063, Dec.
    2021, doi: 10.1109/TMECH.2021.3052037.

    11. Luo M, Wan Z, Sun Y, Skorina EH,Tao W, Chen F, Gopalka L,
    Yang Hand Onal CD (2020) Motion Planning and Iterative Learning Control
    of a Modular Soft Robotic Snake. Front. Robot. AI 7:599242. doi:
    10.3389/frobt.2020.599242

    12. V Arun Kumar et al 2021, ”Snake Robots for Rescue Operation”,
    IOP Conf. Ser.: Mater. Sci. Eng. 1055 012001

    13. Y. Shan and Y. Koren, ”Design and motion planning of a mechanical
    snake,” in IEEE Transactions on Systems, Man, and Cybernetics,
    vol. 23, no. 4, pp. 1091-1100, July-Aug. 1993, doi: 10.1109/21.247890.

    14. Mizuki Nakajima, Motoyasu Tanaka, Kazuo Tanaka & Fumitoshi
    Matsuno (2018): Motion control of a snake robot moving between two
    non-parallel planes, Advanced Robotics, DOI: 10.1080/01691864.2018.1458653

    15. T. Takemori, M. Tanaka and F. Matsuno, ”Hoop-Passing Motion
    for a Snake Robot to Realize Motion Transition Across Different Environments,”
    in IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1696-1711,
    Oct. 2021, doi: 10.1109/TRO.2021.3063438.

    QR CODE
    :::