| 研究生: |
高凱揚 Kai-Yang Kao |
|---|---|
| 論文名稱: |
中風後復健訓練手部動作感測裝置之設計製作與驗證研究 |
| 指導教授: |
潘敏俊
Min-Chun Pan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 中風 、手部復健 、復健輔具 、虛擬實境 |
| 外文關鍵詞: | Stroke, Rehabilitation, Assistive device, Virtual reality |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腦血管疾病又稱為腦中風,是國人十大死因第三名。此疾病造成患者殘障、半側肢體偏癱、或攣縮等身體功能障礙,導致日常生活失能;中風患者需要面對漫長的復健療程、及使用各式輔具,然現行所使用輔具的功能主要在改善或維持殘障者生活行動之能力,對於中風患者而言,要恢復患側手部精細的動作,通常比較困難。傳統的輔具「副木」能有效預防關節變形,又近年開發的多款「動態輔助手套」,利用彈性結構協助患者訓練手指彎曲、伸展等抓握能力;此等輔具雖能有效幫助患者恢復手部功能,但卻缺少訊號量測及回饋機制,無法量化及記錄復健過程中手部施力狀況。本研究以可撓式力量感測片(FlexiForce Sensor),裝置於所設計之復健量測輔具,作為在手部復健,量測 (1)手指與(2)手掌施力的回饋裝置,並設計(3)拇指對掌動作感測裝置,以量化中風患者於復健過程中之肢體活動程度,協助醫師判斷患者使用輔具進行復健的成效。此外,本研究設計之量測裝置將結合虛擬實境遊戲,藉由互動式復健方式,為漫長的復健療程增添樂趣,增進中風患者的復健動機及成效。
Cerebrovascular disease also known as stroke remains the third among the top ten leading causes of death. Patients with stroke usually get some physical dysfunction like disability, hemiplegia or contracture that makes them lose life quality. The patients usually need to face a long rehabilitation process and employ various assistive devices. The main function of assistive devices is to improve or maintain patient’s act ability. For stroke patients to restore their hand function for fine movement is relatively difficult. A traditional aid "splint" can prevent joint deformities effectively. Besides, in recent years a variety of dynamic auxiliary gloves were developed that used elastic structure to help patients train their fingers like bend, stretch and grasping ability. These aids can help patients to recover hand function effectively, but lack signal measurement and feedback for recording and quantifying hand exertion. This study aims to design (1) grip and (2) tip-pinch force measurement devices that combine flexible-force-sensor (FlexiForce Sensor) with assistive devices,and (3) thumb opposition sensing device. These sensing devices can quantify physical activity levels and help physicians assess the effectiveness of rehabilitation. Addition, ally these developed sensing and assistive devices are combining with virtual reality games. They can make the rehabilitation process further interesting, enhance the patients’ motivation on the tasks, and eventually increase the performance.
[1] 張智仁,「人體手掌部運動控制功能診斷評估及連續被動式運動復健訓練系統之開發研究」,碩士論文,長庚大學機械工程研究所(2000)。
[2] Laura C. Miller, Ricardo Ruiz-Torres, Arno H. A. Stienen, and Julius P. A. Dewald, “A Wrist and Finger Force Sensor Module for Use During Movements of the Upper Limb in Chronic Hemiparetic Strok” IEEE Transactions on Biomedical Engineering, Vol.56, No.9, pp. 2312–2317, (2009).
[3] Elizabeth B. Brokaw, Student Member, IEEE, Iian Black, Rahsaan J. Holley, and Peter S. Lum, Member, IEEE “Hand Spring Operated Movement Enhancer (HandSOME): A Portable, Passive Hand Exoskeleton for Stroke Rehabilitation” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol.19, No.4, pp. 391-399, (2011).
[4] 黎秉東:新型專利說明書。2013年6月9日,取自
http://twpat-simple.tipo.gov.tw/tipotwoc/tipotwkm?@@871206492
[5] 王坤池,徐業良,“撓性壓力感測器“Flexiforce Sensor”介紹”,元智大學,(2004).
[6] Tekscan, “seneor construction”, 2013年6月12日,取自
http://www.tekscan.com/flexible-force-sensors.
[7] Tekscan, “specs”, 2013年6月12日,取自http://www.tekscan.com/flexible-force-sensors.
[8] 麥斯科技有限公司,校正手冊。
[9] Digi International, “XBee/XBee-PRO RF Modules,”.
[10] 黃珮珊,「連續被動式運動手部與手腕復健機研發」,碩士論文,陽明大學復健科技輔具研究所(2004)。