跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇艾維
EVI SUAEBAH
論文名稱: Investigation of the Dual Flagellar Motor System
Investigation of the Dual Flagellar Motor System
指導教授: 羅健榮
Chien Jung Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 生物物理研究所
Graduate Institute of Biophysics
畢業學年度: 100
語文別: 英文
論文頁數: 74
中文關鍵詞: Vibrio algynolyticusdual systemflagellar motor
外文關鍵詞: flagellar motor, Vibrio algynolyticus, dual system
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 了解微生物運動的機制相當重要,許多科學領域的研究也都與之息息相關;好譬生物學,醫藥科學和生醫工程。最近的實驗證實分子馬達在細胞運動和細胞內的傳輸作用有所貢獻,而細菌的鞭毛馬達正是我們所知最有強而有力的分子馬達;它可以推動整個細胞使之達到每秒數十倍身長的移動速率。所以我們可將這類細菌被視為自我推動粒子。另外,在細菌在高密度下還有許多有趣的成群移動的現象。
    Vibrio alginolyticus 是海洋中的一種雙鞭毛系統細菌;系統分有單極與側向兩種鞭毛馬達。在生物學上,對於雙鞭毛馬達系統的優勢尚無法清楚解釋。所以我們的研究是對此雙鞭毛馬達系統做分析,測量單一細胞的速率和群體移動的現象。我們觀察對象為Vibrio alginolyticus的三種類型;138-2(有單極與側邊鞭毛)、VIO5(只有單極鞭毛)、 YM19(只有側邊鞭毛)。利用PIV粒子影像速度追蹤,可知細菌在高濃度時的速率。我們亦發展細菌的微流場量測技術。


    The understanding of micro-organism is important in many scientific disciplines such as biology, medical science and engineer. Some recent experiments show that the microscopic molecular motors contribute to the cell locomotion and intracellular transportation. Bacterial flagellar motor is one of the most powerful molecular motor we have known. It can propel the cell up to the speed of tenth of the cell length per second. Therefore, the bacterial cells can be viewed as self-propelled particles. The collective motion of high density cells shows many interesting behaviors such as swarming.
    Vibrio alginolyticus is a marine bacterium that has dual flagellar motor system, polar and lateral flagellar motors. The exact biological advantage of dual flagellar motor system is unknown. Here we present this investigation of the dual flagellar motor system including single cell speed and collective swarm measurements. We obtained three different strains of Vibrio alginolyticus, 138-2 (wild-type), VIO5 (polar+, lateral-), and YM19 (polar-, lateral+) for our investigation. We use Particle Imaging Velocimetry (PIV) to calculate the bacterial speed in high density. We also develop a micro-fluid flow-field measurement of bacteria.

    CONTENS CHAPTER 1 INTRODUCTIONS 1 REFERENCES 3 CHAPTER 2 LITERATUR REVIEW 4 2.1 Vibrionance Flagellar 4 2.2 Swarming and Swimming 5 2.3 Chemotactic 6 2.4 Structure of Flagellar Filament 7 2.5 Energy Transduction 9 Ion Selectivity 10 2.6 Motor in Flagellar System: Protein Function in Rotations 11 2.6.1 Pom A and Pom B 12 2.6.2 Mot X and Mot Y 13 REFERENCE 15 CHAPTER 3 MEASUREMENT AND APPARATUS 18 3.1 Microscope Principle 18 3.1.1 Axiovert 200M Apparatus 18 3.1.2 Eclipse E200 20 3.2 Experimental Steps 22 3.2.1 Measurement Diameter Swarm Plates 23 3.2.2 Speed of Bacteria in Single Cell 24 3.2.3 Swarming Speed 31 3.2.4 Single Cell Velocity Field 32 3.3. Calculation Method 32 3.3.1 PIV Calculation 32 REFERENCE 38 CHAPTER 4 RESULT AND DISCUSSION 39 4.1 Swarm Plates and Radius of Swarm 39 4.2 Swimming Speed in Three Different Strains 42 4.3 PIV Analysis of Swarm Experiment 45 4.3.1 Behavior of Vibrio Strains VIO5 in Collective Motions 46 4.3.2 Behavior of Vibrio Strains YM-19 in Collective Motions 53 4.3.3 Behavior of Vibrio Strains 138-2 in Collective Motions 58 4.3.4 Comparison between Three Different Strains in Collective Motions 65 4.4 Single Cell Velocity Field 68 REFERENCE 72 CHAPTER 5 CONCULSION 73

    [1]. Robert Belas, Melvin Simon, and Michael Silverman. 1986. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol .167. 210-218
    [2]. Ikuro Kawagishi, Yukiyo Maekawa, Tatsuo Atsumi, Michio Homma, and Yasuo Imae. 1995. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolitycus. J. Bacteriol. 178. 5158–5160
    [3]. Sumio Shinoda, Keinosuke Okamoto. 1977. Formation and Function of Vibrio parahaemolyticus Lateral Flagella. J. Bacteriol. 129. 1266-1271
    [4]. Linda R Mc.Carter. 1995. Genetic and Molecular Characterization of the Polar Flagellum of Vibrio parahaemolyticus. J. Bacteriol. 177. 1595–1609
    [5]. Einar Leifson, et al. 1964. Motile Marine Bacteria. J. Bacteriol. 87. 652-666
    [6]. Rasika M.Harshey. 2003. Bacterial Motility on a Surface: Many Ways to a Common Goal. J.Ann. Rev. Micr. 57. 249-273
    [7]. Nicholas C. Darnton, Linda Turner, Svetlana Rojevsky, and Howard C. Berg. 2010. Dynamics of Bacterial Swarming. Biophys. J. 98. 2082–2090
    [8]. Tohru Minamino, Katsumi Imada and Keiichi Namba. 2008. Molecular motors of the bacterial flagella. Sci. Dir. 18. 693–701
    [9]. Hiroyuki Terashima, Seiji Kojima, and Michio Homma. 2008. Flagellar Motility in Bacteria: Structure and Function of Flagellar Motor. Int. Rev. Cell and Mol. Biol. 270. 39-85
    [10]. Yoshiyuki Sowa and Richard M. Berry. 2008. Bacterial Flagellar Motor. Quart. Rev. Biophys. 41. 103-132
    [11]. Kousuke Nogawa, Masaru Kojima, Masahiro Nakajima, Seiji Kojima, Michio Homma, Toshio Fukuda. 2009. Rotational speed control of Na +-driven flagellar Motor by Dual Pipettes. IEEE Trans. on Nano Bioscience. 8. 341-348
    [12]. Kazumasa Muramoto, Ikuro Kawagishi, Seishi Kudo, Yukio Magariyama, Yasuo Imae, and Michio Homma. 1995. High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolitycus. J. Mol. Biol. 251. 50-58
    [13]. Yukako Asai, Ikuro Kawagishi, R.Elizabeth Socket and Michio Homma. 2000. Coupling Ion Specificity of Chimeras between H+- and Na+- Driven Motor Protein MotB and PomB in Vibrio polar flagella. The EMBO J. 19 . 3639-3648
    [14]. Yukako Asai, Ikuro Kawagishi, R. Elizabeth Sockett, and Michio Homma. 1999. Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions. J. Bacteriol. 181. 6332–6338
    [15]. Toshiharu Yakushi, Masaru Kojima, and Michio Homma. 2004. Isolation of Vibrio alginolitycus sodium-driven flagellar motor complex composed of PomA and PomB solubilized by sucrose monocaprate. Microbiol. 150. 911-920.
    [16]. Tomohiro Yorimitsu, Ken Sato, Yukako Asai, Ikuro Kawagishi, And Michio Homma. 1999. Functional Interaction between PomA and PomB, the Na+-Driven Flagellar Motor Components of Vibrio. J. Bacteriol. 181. 5103–5106
    [17]. Hiroyuki Terashima, Masafumi Koike, Seiji Kojima, and Michio Homma. 2010. The Flagellar Basal Body-Associated Protein FlgT Is Essential for a Novel Ring Structure in the Sodium-Driven Vibrio Motor. J. Bacteriol. 192. 5609–5615
    [18]. Tomohiro Yorimitsu, Michio Homma. 2001. Na+-driven flagellar motor of vibrio. Biocim. et Biophy. Acta .1505. 82-93.
    [19]. Seiji Kojima, Akari Shinohara, Hiroyuki Terashima, Toshiharu Yakushi, ayuko Sakuma, Michio Homma, Keiichi Namba, and Katsumi Imada. 2008. Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc Natl. Acad. Sci. U S A. 105.7696–7701.
    [20]. Hiroyuki Terashima, Masamufi koike, Seiji Kojima and Michio Homma. 2010. The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio alginolitycus motor. J. Bacteriol. 192. 5609–5615
    [21]. Howard C. Berg. 2000. Constraints on models for the flagellar rotary motor. Roy. Soc. 355. 503-509
    [22]. Howard C. Berg. 2003. The Rotary Motor Of Bacterial Flagella. Ann. Rev. Biochem. 72.19–54
    [23]. Susan M. Butler & Andrew Camilli. 2005. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat. Rev. Microbiol. 3. 611-620.

    QR CODE
    :::