| 研究生: |
李育誠 Yu-cheng Lee |
|---|---|
| 論文名稱: |
矽與碳結構多孔物質作為VOC線上濃縮之吸脫附特性比較 Silica and Carbon Porous Materials Used in VOC Trapping and Their Charactreristic Studies |
| 指導教授: |
王家麟
Jia-lin Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 揮發性有機化合物 、分子篩 |
| 外文關鍵詞: | molecular sieve, VOCs |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以一系列自製的矽分子篩作為線上濃縮揮發性有機污染物(volatile organic compounds,VOCs)的媒介,測試其吸附捕捉的特性,並與商業化碳分子篩比較。
以各種分子篩捕捉一內含21種大小不同VOCs的自製標準氣體,經由過篩選擇吸附後,接著熱脫附至GC-FID,可以GC層析圖譜具體表現分子篩之間孔洞特性的差異,此自製標準氣體所含物種範圍為C2~C12的VOCs。而以行之多年的商業化碳多重床(Carbotrap+Carboxen1000+
Carboxen1003)作為捕捉大範圍VOCs濃縮材料的基準,與之比較,1003撘配MCM-48製成二重床可以有效彌補中孔徑MCM-48對於C3~C5這些較小分子捕捉效率不佳的缺點。而自製微孔徑的矽分子篩ZSM-5能夠以單一材料對C3~C12的VOCs大範圍的捕捉,在吸附量上接近商業化碳分子篩,熱脫附所需溫度比碳分子篩低,經過耐熱實驗,也顯示矽骨幹分子篩耐熱性比碳分子篩高,所以其使用壽命更長,應用範圍更廣,惟此自製ZSM-5含有Al金屬在熱脫附時會使某些VOCs發生觸媒反應,使標準氣體的成分改變,造成分析結果略差於碳分子篩,但是自製ZSM-5的結構特性提供未來開發VOCs線上濃縮吸附材料一個明確的指引方向。
This research investigates the use of a series of self-made silica molecular sieves as in-line trapping media for the enrichment of ambient volatile organic compounds (VOCs). A standard mixture containing 22 VOCs from C2 to C12 is employed as the target compounds to be captured by sorbents and thermally desorbed into gas chromatograph/flame ionization detection (GC/FID) for assessment. A combination of 3 commercially available carbon based molecular sieves are employed which are either individually or collectively formulated into multi-sorbent bed which the silica materials can reference to.
While the mesoporous silica MCM-41 is know to only capture heavier VOCs (> C8), the combination of a microporous carbon sorbent (Carboxen 1003) and MCM-41 provide an expected complementary merit by fullfilling the entire sorption range. Despite the obvious merit, the thermally liable carbon sorbents still cause a concern in terms of the lifetime of the in-line trap. In light of this deficiency, several micro-porous silica molecular sieves are explored as possible candidates due to their suitable pore sizes and high thermal stability. Among these selections, ZSM-5, an Al/Si = 67 mixed silica, shows an extremely satisfactory trapping efficiency across the entire VOC range. This single compound can meet the criteria of e.g., full range trapping, high thermal stability, low thermal desorption temperatures, fine mechanical properties, etc. The only drawback with ZSM-5 lies in its catalytic activity which has been shown to alter the integrity of certain VOC composition. For instance, 1-butene, can be catalytically converted into other butene isomers during thermal desorption. Nevertheless, the above mentioned structural advantages of ZSM-5 provide clear guidelines for further improving the existing ZSM-5 to a metal-free silica with similar porous properties.
1. Baird, C., 2001, Environmental Chemistry, W.H.Freeman and Company.
2. http://www.epa.gov/ttn/atw/188polls.html
3. United Nations Enviromental Programme (UNEP). Montreal
Protocol on substances that deplete the ozone layer., Montreal, September 1987.
4. http://www.cmdl.noaa.gov/hats/publictn/elkins/cfcs.html
5. http://www.epa.gov.tw/upload/F/air/86/86_23.doc
6. Fraser, P.J., Cunnold, D.M., Alyea, F.N., Weiss, R.F., Prinn, R.,
Simmonds, P.G., Miller, B.R., Langenfelds, R.L., 1996, Lifetime
and emission estimates of 1,1,2-trichlorotrifluorethane(CFC-113).
7. http://proj.moeaidb.gov.tw/ods/ctrl/ctrl-outsite.htm
8. http://www.epa.gov/ozone/geninfo/gwps.html
9. http://www.epa.gov/air/ozonepollution/health.html
10. 蔡政雄, 王家麟, 2001, 臭氧前趨物連續監測與臭氧生成之光化學探討, 碩士論文, 中央大學化學研究所.
11. http://www.epa.gov/oar/oaqps/pams/general.html
12. Carter, W., 1994, Development of ozonereactivity scales forvolatile organic compounds, J. Air Waste Manage. Assoc., 44, 881-899.
13. http://www.epa.gov/oar/oaqps/pams/general.html
14. USEPA “Compendium Method TO-14: Determination of volatile organic compounds (VOCs) in ambient air using specially prepared canisters with subsequent analysis by gas chromatography”
15. USEPA“Compendium method TO-15:Determination of volatile organic compounds (VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography / mass spectrometry”
16. http://www.niea.gov.tw/niea/AIR/A71512B.htm
17. USEPA “Compendium Method TO-17:Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes”
18. http://www.niea.gov.tw/niea/AIR/A50511B.htm
19. Wu, C.H., Feng, C.T., Lo, Y.S., Lin, T.Y., Lo, J.G., 2004, Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS, Chemosphere, 56, 71-80.
20. Yamamoto, N., Okayasu, H., Hiraiwa, T., Murayama, S., Maeda, T., Morita, M., Suzuki, K., 1998, Continuous determination of volatile organic compounds in the atmosphere by an automated gas chromatographic system, J. Chromatogr. A., 819, 177-186.
21. Karpe, P., Kirchner, S., Rouxel, P., 1995, Thermal desorption gas chromatography-mass spectrometry-flame ionization detection-sniffer multi-coupling: A device for the determination of odorous volatile organic compounds in air, J. Chromatogr. A., 708, 105-114.
22. Wang, J.L., Chang, C.J., Chang, W.D. Chew, C., Chen, S.W., 2000, Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere, J. Chromatog. A., 844, 259-269.
23. Dewulf, J., Van Langenhove, H., 1997, Chlorinated C1 hydrocarbons and C2 hydrocarbons and monocyclic aromatic-hydrocarbons in marine waters- An overview on fate processes, sampling, analysis and measurements, Water Res., 31, 1825-1838.
24. 陳彥銓, 王家麟, 2004, 以質譜儀同時分析C3~C12揮發性臭氧前驅物,
碩士論文, 中央大學化學研究所.
25. 王介亨, 王家麟, 2004, 以Heart-cut 技術配合單偵檢器發展氣相層析“剪裁(tailoring)技術”, 碩士論文, 中央大學化學研究所.
26. 蘇源昌, 王家麟, 2006, 內部標準在氣相層析質譜儀分析揮發性有機物的效能探討, 碩士論文, 中央大學化學研究所.
27. 吳季融, 王家麟, 2003, 空氣中有機污染物自動分析技術之開發研究 壹﹑碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究貳﹑有機污染物垂直探空光化研究, 碩士論文, 中央大學化學研究所.
28. 蕭麗君, 王家麟, 2005, 新吸附材料用空氣中揮發性物質的萃取方法開發, 碩士論文, 中央大學化學研究所.
29. 徐如人等編著, 2004, 分子篩與多孔材料化學, 科學出版社, 北京.
30. 丁君強, 高憲明, 2004, 含鋁中孔洞分子篩之結構鑑定與催化活性研究:直接合成與後修飾法之比較, 碩士論文, 中央大學化學研究所.
31. Stenzel, M.H., 1993, Remove organcs by activated carbon adsorption, Chemical Engineering Progress, 89, 7, 36-43.
32. 李秉傑, 邱宏明, 王奕凱合譯, 1988, 非均勻系催化原理與應用, 渤海堂文化公司, 台北市.
33. Penchev, V., Minchev, C., Kanazirev, V., Pencheva, O., Borisova, L., Lechert, H., Kacirek, H., 1983, Thermochemical and acidic properties of the zeolites offrelite, omega and ZSM-5, Zeolites., 3, 249.
34. Weisz, P.B., 1980, The 7th International Congress on Catalysis, Tokyo, P.1.
35. Csicsery, S.M., 1984, Shape-selective catalysis in zeolites, Zeolites, 4, 202.
36. Chen, N.Y., Garwood, W.E., 1986, Industrial application of shape selective catalysis, Catal. Rev.-Sci. Eng., 28, 185.
37. Arguar, R.J., Landolt, G.R., U.S. Patent, 3, 702, 886, 1972.
38. Kao, H.M., Wu, H.M., Liao, Y.W., Chiang, S.T., 2005, Aluminosilicate MCM-48 mesostructures assembled from dried zeolite precursors and Gemini surfactant, Microporous and Mesoporous Materials, 86, 256-267.
39. 吳東明, 王家麟, 2005, 中孔徑矽分子篩與微孔徑碳分子篩使用於
VOC 線上濃縮之吸附性比較, 碩士論文,中央大學化學研究所.
40. Cassiers, K., Linssen T., Mathieu M., Benjelloun, M., 2002, A detailed study of thermal, hydrothermal, and mechanical stabilities of a wide range of surfactant assembled mesoporous silicas, Chem. Mater., 14, 2317-2324.
41. Sanchez, J.M., Sacks, R.D., 2003, On-line multibed sorption trap and injector for the GC analysis of organic vapors in large-volume, air samples, Anal. Chem., 75, 978-985.
42. 陳偉立, 王家麟, 2000, 大氣及水樣中揮發性有機氣體自動化新技術之建立及應用, 碩士論文, 中央大學化學研究所.
43. USEPA;Compendium Method TO-2: Method for the determination of volatile organic compounds (VOCs) in ambient air by carbon molecular sieve adsorption gas chromatography/mass Spectrometry (GC/MS).
44. 李雅琳, 王家麟, 2005, 以重量法製備微量揮發性有機化合物標準氣體之研究, 碩士論文, 中央大學化學研究所.
45. Wu, T.M., Kao, H.M., Wu, G.R., Wang, J.L., 2005, Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds, J. Chromatography A., 1105 , 168-175.