跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林京民
Ching-Min Lin
論文名稱: CR REDUCTION ON A CIRCLE BUNDLE OVER A COMPLEX MANIFOLD
指導教授: 黃榮宗
Rung-Tzung Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 43
中文關鍵詞: 柯西黎曼流形圓叢約化與量子化的交換性
外文關鍵詞: circle bundle, Symplectic reduction, Guillemin-Sternberg theorem, quantization commuting with reduction
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們首先回顧辛約化,尤其是關於約化與量子化的交換性的Guillemin-Sternberg定理。再來我們回顧柯西黎曼約化的構造。最後我們試著在有柯西黎曼條件的凱勒流形上的圓叢上定出Guillemin-Sternberg定理。


    In this thesis we first review the symplectic reduction, in particular, the Guillemin-Sternberg theorem about quantization commuting with reduction. Then we review the construction of the CR reduction. Finally we formulate the Guillemin-Sternberg theorem on a circle bundle over a K\"{a}hler manifold in the CR setting.

    Chapter 1. Introduction page1 Chapter 2. Actions of Lie groups on manifolds page3 1. Induced vector fields by group actions page3 2. The slice theorem page4 3. Lifting Lie group actions in vector bundles page6 Chapter 3. Symplectic reduction page9 1. Moment map page9 2. Symplectic reduction page10 Chapter 4. Symplectic reductions and prequantizations page13 1. Prequantum line bundle page13 2. Kähler prequantizations and reduction page15 Chapter 5. CR reduction page19 1. CR manifolds page19 2. Contact reduction page21 3. CR reduction page21 Chapter 6. CR reduction on a circle bundle over a complex manifold page25 Bibliography page29

    C. Albert, {Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact}, J. Geom. Phys., {6} (1989), 627-649.

    Cannas da Silva, {Lectures on symplectic geometry}, Lecture Notes in Mathematics, {1764}, Springer-Verlag, Berlin, 2001.

    J.-H. Cheng, C.-Y. Hsiao and I.-H. Tsai, {Heat kernel asymptotics and a local index theorem for CR manifolds with S^1 action}, ArXiv:1511.00063.

    H. Geiges, {Constructions of contact manifolds}, Math. Proc. Cambridge Philos. Soc., {121} (1997), no. 3, 455-464.

    V. Guillemin and S. Sternberg, {Geometric quantization and multiplicities of group representations}, Invent. Math. {67} (1982), no. 3, 515-538.

    G. Heckman and P. Hochs, {Geometry of the momentum map}, Lecture notes, (2012).

    C.-Y. Hsiao and R.-T. Huang, {G-invariant Szegö kernel asymptotics and CR reduction}, arXiv: 1702.05012.

    B. Kostant, {Quantisation and unitary representations}, Lecture notes in Mathematics, Springer-Verlag, 1970.

    F. Loose, {A remark on the reduction of Cauchy-Riemann manifolds}, Math. Nachr., {214} (2000), 39-51.

    X. Ma, {Hamiltonian manifolds and geometric quantization}. Lecture notes.

    J. Marsden and A. Weinstein, {Reduction of symplectic manifolds with symmetry}, Reports on mathematical physics 5, 1974, 121-130.

    J. M. Souriau, {Structures des systémes dynamiques}, Dunod, 1970.

    QR CODE
    :::