| 研究生: |
林子翼 Tzu-yi Lin |
|---|---|
| 論文名稱: |
摻雜載子對砷化銦量子點雷射特性之影響 Effects of Doping on the Performance of InAs/GaAs Quantum Dots Lasers |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 砷化銦 、量子點雷射 、砷化鎵 、摻雜 、變溫 、抗反射膜 |
| 外文關鍵詞: | quantum dots laser, inas, dopeing, temperature, gaas, ar |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討不摻雜、p摻雜及n摻雜的砷化銦量子點雷射特性與溫度的相依性。p摻雜的量子點雷射擁有最佳的飽和功率和熱穩定性,但是在低於室溫10 oC時其臨界電流卻比n摻雜的元件來得高。此外為了更深入探討溫度的對內部載子復合發光的影響,我們利用TiO2搭配SiO2堆疊完成穿透率高達99.976%的抗反射膜,其穿透率高於99.9%的範圍有90 nm寬。蒸鍍抗反射膜在雷射的側壁讓我們獲得單純的自發輻射光譜,以分析載子的行為。我們觀察到三種元件都具有負特徵溫度的現象,這部分恰好與量子點自發光譜上的半高寬窄化的趨勢相符合,因此我們推斷此一負特徵溫度的主因為載子在量子點之間的重新分佈,進而使得雷射出現臨界電流隨溫度上升而下降的現象。
In this study, the effects of doping on the temperature characteristics of InAs quantum dot lasers are investigated. The p-doped quantum dot laser shows the highest saturation power and characteristic temperature among these lasers. However, the threshold current density of the p-doped is higher than that of the n-doped device.
Besides, SiO2/TiO2 anti-reflection film with a very high transmission (~ 99.976%) is designed and realized. A bandwidth of 90 nm for transmission over 99.9% is measured on this film. With this coating, temperature-dependent spontaneous emission spectra are investigated to study the behavior of carrier in these devices. Based on the correlation between the negative characteristic temperature and the reduced spectral linewidth, the observed behavior of these devices can be attributed to the carrier redistribution between quantum dots.
[1] M. Ssada, Y. Miyamoto, and Y. Suematsu, J. Quantum Electron. QE-22, 1915 (1986)
[2] Y. Arakawa, and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)
[3] M. Asada, Y. Miyamoto, and Y. Suematsu, J. Quantum Electron. QE-22, 1915 (1986)
[4] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, Electron. Lett. 30, 1416 (1994)
[5] D. Bimberg, N. Kirstaedter, M. Grundmann, N. Kirstaedter, O. G. Schmidt, M.-H. Mao, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, I. Alferov, S. S. Ruvimov, U. Gösele, and J. Heydenreich Jpn. J. Appl. Phys. 35, 1311 (1996)
[6] M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul`nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop’ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov and P. Werner, J. Appl. Phys. 83, 5561 (1998)
[7] S. Fathpour, Z. Mi, and P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, APPLIED PHYSICS LETTERS, 85, 22, (2004)
[8] W. Sheng and J.-P. Leburton, APPLIED PHYSICS LETTERS, 80, pp.2755-2757, (2002)
[9] 李正中, 薄膜光學與鍍膜技術, 第四版,藝軒圖書出版社 (2004)
[10] J. A. Thornton, J.Vac.Sci. Technol.11, pp. 666-670 (1974)
[11] I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, IEEE J. Sel. Top. Quantum Electron. 9, 1300 (2003)
[12] Alfred R. Adams, IEEE J. Selected Topics in Quantum Electronics, Vol.5, NO.3, 401 (1999)
[13] G. P. Agrawal, and N. K. Dutta, “Long-Wavelength Semiconductor Lasers”,1986A.D, Van Nostrand Reinhold, New York
[14] I. C. Sandall, P. M. Smowton, J. D. Thomson, T. Badcock, D. J. Mowbray, H.-Y. Liu, M. Hopkinson, APPLIED PHYSICS LETTERS, 89, 15118 (2006)
[15] I. P. Marko, N. F. Masse, S. J. Sweeney,A. D. Andreev, A. R. Adams, N. Hatori and M. Sugawara, APPLIED PHYSICS LETTERS, 87, 211114, (2005)
[16] Dennis G. Deppe, Fellow, IEEE, H. Huang, Oleg B. Shchekin, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 38, NO. 12, DECEMBER (2002)