| 研究生: |
陳政欣 Cheng-hsin Chen |
|---|---|
| 論文名稱: |
矽基板氮化鎵電晶體閘極佈局研究 The study of layout design in GaN HEMTs on Si substrate |
| 指導教授: |
辛裕明
Yue-ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 元件佈局 、氮化鎵 |
| 外文關鍵詞: | device layout, GaN |
| 相關次數: | 點閱:28 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對在低阻值矽(111)基板上進行氮化鋁鎵/氮化鎵電晶體製作與研究,並使用新的閘極佈局方式來提升汲極電流,以降低晶片成本。而電晶體製作採用離子佈植(Ion Implant)作為元件隔絕。
論文中,當元件的汲極到源極距離為9 µm,閘極長度為2 µm寬度為104 µm的元件上,單閘極佈局元件的特性為IDSS = 762.7mA/mm, VTH = -7.4 V,而矩陣型佈局元件可以比單閘極佈局元件在相同的元件主動區面積下,得到汲極電流的提升,大約87%的增加量。若在導通電流同約為140 mA時,矩陣型佈局元件可以比單閘極佈局元件在元件主動區結節省約45%的面積。最後,深入探討單閘極元件與矩陣型布局元件間電容與熱阻特性之變化。
Two kinds of AlGaN/GaN HEMTs with different device layouts were fabricated and compared. A new matrix layout is proposed to reduce device active area while keeping drain current capability. Compared to device with single finger layout and similar drain current (IDSS = 140 mA), device with matrix layout saves 45% active area. When both of them have the same active area, device with new matrix layout can achieve 1.87 times higher IDSS than device with single finger layout. Finally, the gate capacitances and the thermal resistance of devices with new matrix layout and single finger layout are discussed.
[1] L. F. Eastman and U. K. Mishra, “The toughest transistor yet GaN transistors,” in IEEE Spectrum, California, vol. 3, pp.28-33, May 2002
[2] K.S. Boutros, S. Burnham, D. Wong, K. Shinohara et al, “Normally-off 5A/1100V GaN-on-Silicon Device for High Voltage Applications” in IEEE International Electron Devices Meeting (IEDM), 2009, pp. 1-3
[3] Beach Robert,“III-nitride device with improved layout geometry” U.S. Patent 7417257, Aug 26, 2008
[4] Tiemeijer Lukas Frederik, “High frequency transistor layout for low source drain capacitance” U.S. Patent 7265399,Sep 04, 2007
[5] Geoff Haynes, “State of the art GaN switches and their relevance to SMART DC in the UK,” GaN Systems Inc. 2012
[6] D. Balaz, “Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors” Ph.D. thesis, Dept. Elect. Eng, Glasgow Univ, Glasgow, UK, 2010.
[7] Y. C. Kong, Y.D. Zheng, C. H. Zhou, S.L. Gu, R. Zhang, P. han, Y. Shi, R. l. Jiang, “ Two-dimensional electron gas densities in AlGaN/AlN/GaN heterostructures,” in Appl. Phys. A 84, pp. 95–98, 2006
[8] GaN HEMT Technology ,Wayne Johnson and Edwin L. Piner, Kopin Co.,2011, pp 209-237
[9] T. E. Seidel, “Ion Implantation.” in S. M. Sze, Ed., VLSI Technology, McGraw-Hill, New York, 1983.
[10] I. Brodie and J. J. Muray, “The Physics of Microfabrication, Plenum”, New York, 1982.
[11] 薛光博, “砷化鎵場效電晶體表面氧離子佈植和自我校準技術之研究,”碩士論文,國立中央大學, 中壢, 台灣, 2001.
[12] S. M. Sze, “Semiconductor Devices: Physics and Technology,” Chap. 10, John Wiley & Sons, 1985.
[13] M. T. Robinson, and O. S. Oen, “The effect of channeling on displacement cascade theory” in Applied Physics Letter, vil. 2, pp. 30, 1963.
[14] Jungwoo Joh and Uttiya Chowdhury “Method for Estimation of the Channel Temperature of GaN High Electron Mobility Transistors” in ROCS Workshop, 2007.[Reliability of Compound Semiconductors Digest], pp. 87-89,Oct. 2007