| 研究生: |
陳世剛 Shih-Gang Chen |
|---|---|
| 論文名稱: |
利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統 Adaptive Backstepping Control of Six-Phase PMSM Position Drive System using Functional Link Radial Basis Function Network |
| 指導教授: |
林法正
Faa-Jeng Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 適應性步階迴歸控制 、函數連結放射狀基底函數網路 、數位訊號處理器 、六相永磁同步馬達 、總集不確定項 、李亞普諾夫穩定性 |
| 外文關鍵詞: | Adaptive backstepping control, functional link radial basis function network, digital signal processor, six-phase permanent magnet synchronous motor, lumped uncertainty, Lyapunov stability |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的是研製以數位訊號處理器為基礎之適應性步階迴歸控制,並利用函數連結放射狀基底函數網路當作不確定性觀測器,用於六相永磁同步馬達定位驅動系統。首先,本研究先推導出六相永磁同步馬達以磁場導向控制的動態模型。接著,將所設計好的步階迴歸控制系統應用於定位驅動系統控制上作馬達轉子機械位置命令的追隨。由於六相永磁同步馬達定位系統上所存在的不確定項是難以預先得到的,因此在實際應用上要設計一有效益之步階迴歸控制系統是很困難的。有鑒於此,本研究提出了適應性步階迴歸控制系統,利用適應律來估測步階迴歸控制系統中的總集不確定項。但之後為了增加六相永磁同步馬達定位驅動系統的強健及精確性,使用函數連結放射狀基底函數網路當作總集不確定項之觀測器,並以補償控制器來消除其最小重建誤差。除此之外,利用李亞普諾夫穩定性理論推導出線上學習演算法,並藉由線上訓練的方式來更新函數連結放射狀基底函數網路之參數。最後,本研究以32位元浮點運算數位訊號處理器TMS320F28335完成所提出之六相永磁同步馬達定位驅動系統,且利用實驗結果來驗證所提出之智慧型適應性步階迴歸控制系統的強健控制成效。
An adaptive backstepping control (ABSC) using a functional link radial
basis function network (FLRBFN) uncertainty observer is proposed in this study
to construct a high-performance six-phase permanent magnet synchronous
motor (PMSM) position servo drive system. The dynamic model of a
field-oriented six-phase PMSM position servo drive is described first. Next, a
backstepping control (BSC) system is designed for the tracking of the position
reference. Since the lumped uncertainty of the six-phase PMSM position servo
drive system is difficult to obtain in advance, it is very difficult to design an
effective BSC for practical applications. Therefore, an ABSC system is
designed using an adaptive law to estimate the required lumped uncertainty in
the BSC system. To further increase the robustness of the six-phase PMSM
position servo drive, an FLRBFN uncertainty observer is proposed to estimate
the lumped uncertainty of the position servo drive with a compensated
controller to eliminate the minimum reconstructed error. In addition, an onl ine
learning algorithm is derived using Lyapunov stability theorem to learn the
parameters of the FLRBFN online. Finally, the proposed position control
system is implemented in a 32-bit floating-point DSP, TMS320F28335. The
effectiveness and robustness of the proposed intelligent ABSC system are
verified by some experimental results.
[1] Y. Zou and Z. Zheng, “A robust adaptive RBFNN augmenting backstepping
control approach for a model-scaled helicopter,” IEEE Trans. Control Syst.
Technol., vol. 23, no. 6, pp. 2344–2352, Nov. 2015.
[2] C. H. Lin, M. K. Lin, R. C. Wu, and S. Y. Huang, “Integral backstepping
control for a PMSM drive using adaptive FNN uncertainty observer,” in
Proc. IEEE Conf. Ind. Electron., pp. 668-673, May 2012.
[3] L. Yi and P. Yonghong, “Application of fuzzy neural network in the speed
control system of induction motor,” in Proc. IEEE Conf. Comput. Sci.
Autom. Eng., pp. 673-677, Jun. 2011.
[4] H. H. Choi, H. M. Yun, and Y. Kim, “ Implementation of evolutionary
fuzzy PID speed controller for PM synchronous motor,” IEEE Trans. Ind.
Informat., vol. 11, no. 2, pp. 540–547, Apr. 2015.
[5] Google DeepMind, ht tp: / /marketbusinessnews.com/ar t i f icial -
intelligence-stunned-experts-and-won-at-toughest-game-ever/122552
[6] Roborace, http://www.pcworld.com/article/3050716/meet-robocarthe-
dr ive r l e s s - r a c ing -car- for -the- a i -powe r ed - robor a c e .html
[7] Sony, ht tp: / /www.ki tguru.net /per ipherals/anton -shi lov/sonys -
playstation-vr-headset-will-cost-like-a-new-game-console-says-company/
[8] J. C. Salmon and B. W. Williams, “A split-wound induction motor design to
improve the reliability of PWM inverter drives,” IEEE Trans. Ind. Appl., vol.
26, no. 1, pp. 143–150, Jan./Feb. 1990.
[9] R. O. C. Lyra and T. A. Lipo, “Torque density improvement in a six-phase
induction motor with third harmonic current injection,” IEEE Trans. Ind.
Appl., vol. 38, no. 5, pp. 1351–1360, Sep./Oct. 2002.
[10] S. Karugaba and O. Ojo, “A carrier-based PWM modulation technique for
balanced and unbalanced reference voltages in multiphase voltage-source
inverters,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2102–2019, Nov./Dec.
2012.
95
[11] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson,
“Overview of electric motor technologies used for more electric aircraft
(MEA),” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3523–3531, Sep.
2012.
[12] A. Cavagnino, Z. Li, A. Tenconi, and S. Vaschetto, “Integrated generator
for more electric engine: Design and testing of a scaled size prototype,”
IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2034–2043, Sep./Oct. 2013.
[13] H. S. Che, E. Levi , M. Jones, M. J. Duran, W. P. Hew, and N. A. Rahim,
“Operation of a six-Phase induction machine using series-connected
machine-side converters,” IEEE Trans. Ind. Electron.,vol. 61, no. 1, pp.
164–176, Jan. 2014.
[14] E. Levi, “Multiphase electric machines for variable-speed applications,”
IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893–1909, May 2008.
[15] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing:
A Computational Approach to Learning and Machine Intelligence.
Englewood Cliffs, NJ: Prentice-Hall, 1997.
[16] F. J. Lin, L. T. Teng, C. Y. Chen, and Y. C. Hung, “FPGA-based adaptive
backstepping control system using RBFN for linear induction motor
drive,” IET Electr. Power Appl., vol. 2, no. 6, pp. 325-340, Nov. 2008.
[17] C. N. Huang and A. Chung, “An intelligent design for a PID controller for
nonlinear systems,” Asian J. Control, vol. 18, no. 1, pp. 1–9, Mar. 2016.
[18] L. Ciabattoni, M. L. Corradini, M. Grisostomi, G. Ippoliti, S. Longhi and
G. Orlando, “A discrete-time VS controller based on RBF neural networks
for PMSM drives,” Asian J. Control, vol. 16, no. 2, pp. 396–408, Mar.
2014.
[19] J. C. Patra and R. N. Pal, “A functional link artificial neural network for
adaptive channel equalization,” Signal Processing, vol. 43, pp. 181-195,
May 1995.
[20] K. A. Toh and W. Y. Yau, “Fingerprint and speaker verification decisions
96
fusion using a functional link network,” IEEE Trans. Syst., Man, and
Cybern. C, Appl. Rev., vol. 35, no. 3, pp. 357-370, Aug. 2005.
[21] F. J. Lin, P. H. Chou, Y. C. Hung, and W. M. Wang, “Field-programmable
gate array-based functional link radial basis function network control for
permanent magnet linear synchronous motor servo drive system,” IET
Electr. Power Appl., vol. 4, no. 5, pp. 357-372, May 2010.
[22] D. Zhao, W. Chen, J. Wu, and J. Li, “Globally stable adaptive tracking
control for uncertain strict-feedback systems based on neural network
approximation,” Asian J. Control, vol. 18, no. 1, pp. 1–12, Mar. 2016.
[23] F. J. Lin, L. T. Teng, and C. K. Chang, “Adaptive backstepping control for
linear-induction-motor drive using FPGA,” IET Electr. Power Appl., vol.
153, no. 4, pp. 483–492, Jul. 2006.
[24] C. C. Tsai, Y. Y. Li, F. C. Tai, and C. H. Lu, “Intelligent adaptive motion
control using fuzzy basis function networks for electric unicycle,” Asian J.
Control, vol. 17, no. 3, pp. 993–156, May 2015.
[25] H. J. Shieh and K. K. Shyu, “Nonlinear sliding-mode torque control with
adaptive backstepping approach for induction motor drive,” IEEE Trans.
Ind. Electron., vol. 46, no. 2, pp. 380–389, May 1999.
[26] F. J. Lin and C. C. Lee, “Adaptive backstepping control for linear
induction motor drive to track periodic references,” IEE Proc., Electr.
Power Appl., vol. 147, no. 6, pp. 449–458, Nov. 2000.
[27] J. J. E. Slotine, and W. Li, Applied nonlinear control. Englewodd Cliffs,
NJ: Prentice-Hall, 1991.
[28] MS320F28335, TMS320F28334, TMS320F28332, TMS320F28235,
TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data
Manual, Texas Instruments, Jun. 2007.
[29] 楊凱捷,“利用遞迴式模糊類神經小腦模型網路之錯誤容忍控制六相
永磁同步馬達定位驅動系統”,碩士論文,中央大學電機系,民國一
97
百零三年。
[30] 許尚文,“六相永磁式同步電動機之設計與控制”,碩士論文,台灣
科技大學電機系,民國九十五年。
[31] 王俊超,“六相永磁式同步電動機驅動器之分析與設計”,碩士論文,
台灣科技大學電機系,民國九十四年。
[32] 吳泰廷,“六相永磁式同步電動機驅動系統之故障後控制策略”,碩
士論文,台灣科技大學電機系,民國九十八年。
[33] B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall,
Saddle River, NJ, 2002.
[34] S. J. Kim, et al., “Robust torque control of DC link voltage fluctuation for
SynRM considering inductances with magnetic saturation,” IEEE Trans.
Magn., vol. 46, no. 9, pp. 3705–3708, Jun 2010.
[35] F. J. Lin, Y. C. Hung and M. T. Tsai, “Fault-tolerant control for six-phase
PMSM drive system via intelligent complementary sliding-mode control
using TSKFNN-AMF”, IEEE Trans. Ind. Electron., vol. 60, no. 12, pp.
5747–5762, Dec. 2013.
[36] F. J. Lin, Y. C. Hung, J. C. Hwang and M. T. Tsai, “Fault-tolerant control
of a six-phase motor drive system using a Takagi–Sugeno–Kang type
fuzzy neural network with asymmetric membership function”, IEEE Trans.
Power Electron., vol. 28, no. 7, pp. 3557–3572, Jul. 2013.
[37] 劉昌煥,『交流電機控制:向量控制與直接轉矩控制原理-第四版』,
東華書局股份有限公司,2013年。
[38] P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE
Control. Syst. Mag., vol. 12, pp. 7–17, Jun. 1992.
[39] M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic, Nonlinear and
Adaptive Control Design, New York: Wiley, 1995.
[40] C. K. Lin, L. C. Fu, T. H. Liu, and B. H. Chou, “Passivity-based adaptive
backstepping PI sliding-mode position control for synchronous reluctance
98
motor drives,” Asian Control Conf. 8th, pp. 245-250, May 2011.
[41] R. J. Wai and H. H. Chang, “Backstepping wavelet neural network control
for indirect field-oriented induction motor drive,” IEEE Trans. Neural
Netw., vol. 15, no. 2, pp. 367–82, Mar. 2004.
[42] Z. Li, C. Y. Su, G. Li, and H. Su, “Fuzzy approximation-based adaptive
backstepping control of an exoskeleton for human upper limbs,” IEEE
Trans. Fuzzy Syst., vol. 23, no. 3, pp. 555–566, Jun. 2015.
[43] C. C. Liao, C. H. Chen, Y. F. Peng, and S. C. Wu, “A combined
backstepping and wavelet neural network control approach for mechanical
system,” Asian Control Conf. (ASCC) 9th, pp. 1–6, Jun. 2013.
[44] D. Mayne, “Nonlinear and Adaptive Control Design-M. Kristic, I.
Kanellakopoulis, and P. V. Kokotovic (New York: Wiley, 1995),” IEEE
Trans. Autom. Control, vol. 41, no. 12, pp. 1849–1853, Dec.1996. (Book
Review).
[45] J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, and O. D.
Ramírez-Cárdenas, “Robust backstepping tracking controller for
low-speed PMSM positioning system: design, analysis, and
implementation, ” IEEE Trans. Ind. Informat., vol. 11, no. 5, pp.
1130–1141, Oct. 2015.
[46] J. A. Primbs, V. Nevistic, and J. C. Doyle, “Nonlinear optimal control: a
control Lyapunov function and receding horizon perspective,” Asian J.
Control, vol. 1, no. 1, pp. 14–24, Mar. 1999.
[47] C. C. Yang, “Robust adaptive terminal sliding mode synchronized control
for a class of non-autonomous chaotic systems,” Asian J. Control, vol. 15,
no. 6, pp. 1677–1685, Nov. 2013.
[48] 林俊良,『智慧型控制-分析與設計』,台北市,全華圖書股份有限公
司,2008年。
[49] A. Sahoo, H. Xu, and S. Jagannathan, “Adaptive neural network-based
99
event-triggered control of single-input single-output nonlinear
discrete-time systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
1, pp. 151–164, Jan. 2016.
[50] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1996.
[51] F. J. Lin and P. H. Chou, “Robust Fuzzy-neural-network sliding-mode
control for two-axis motion control system,” IEEE Trans. Ind. Electron.,
vol. 53, no. 4, pp. 1209–1225, Jun. 2006.
[52] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “Identification and prediction of
dynamic systems using an interactively recurrent self-evolving fuzzy
neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp.
310–321, Feb. 2013.
[53] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems.
Addison-Wiley, 2005.
[54] 王進德,『類神經網路與模糊控制理論入門與應用』,台北市,全華科
技圖書股份有限公司,2008年。
[55] F. J. Lin, R. J. Wai, and R. Y. Duan, “Fuzzy neural networks for
identification and control of ultrasonic motor drive with LLCC resonant
technique,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 999–1011, Oct.
1999.
[56] Y. H. Pao, S. M. Phillips, and D. J. Sobajic, “Neural-net computing and
intelligent control systems,” Int. J. Control., vol. 56, no. 2, pp. 263–289,
1992.
[57] J. C. Patra and R. N. Pal, “Functional link artificial neural network-based
adaptive channel equalization of nonlinear channels with QAM signal, ”
IEEE Int. Conf. on Syst., Man, and Cybern., vol. 3, pp. 2081–2086, Oct.
1995.
[58] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of
100
nonlinear dynamic systems using functional link artificial neural
networks,” IEEE Trans. Syst., Man, and Cybern. B, Cybern., vol. 29, no.
1, Apr. 1999.
[59] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans. Neural
Netw., vol. 2, no. 1, pp. 302-309, Mar. 1991.
[60] J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis
function networks and fuzzy inference systems,” IEEE Trans. Neural
Netw., vol. 4, no. 4, pp. 156-159, Mar. 1993.
[61] H. Yu, T. Xie, S. Paszczyñski, and B. M. Wilamowski, “Advantages of
radial basis function networks for dynamic system design” IEEE Trans.
Ind. Electron., vol. 58, no. 12, pp. 5438–5450, Dec. 2011.
[62] J. X. Peng, K. Li, and D. S. Huang, “A hybrid forward algorithm for RBF
neural network construction,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp.
1439–1451, Nov. 2006.
[63] P. H. Shen and F. J. Lin, “Intelligent backstepping sliding-mode control
using RBFN for two-axis motion control system,” IET Electr. Power Appl.,
vol. 152, no. 5, pp. 1321–1342, Sep. 2005.
[64] J. Tian, M. Li, F. Chen, and N. Feng, “Learning subspace-based RBFNN
using coevolutionary algorithm for complex classification tasks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 47-61, Jan. 2016.
[65] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li, “Intelligent controlled
wind-turbine emulator and induction-generator system using RBFN,” IET
Electr. Power Appl., vol. 153, no. 4, pp. 608–618, Jul. 2006.
[66] T. Pajchrowski, K. Zawirski, and K. Nowopolski, “Neural speed controller
trained online by means of modified RPROP algorithm,” IEEE Trans. Ind.
Informat., vol. 11, no. 2, pp. 560–568, Apr. 2015.