跳到主要內容

簡易檢索 / 詳目顯示

研究生: 菲莎
Fasya Khuzaimah
論文名稱: 在與希格斯玻色子有關聯的暗物質搜索中去測量深度雙底夸克標記校正因子的誤判率
Measurement of Mistagging Scale Factor of the Deep Double b-Tagger in the Search for Dark Matter in Association with a Higgs Boson
指導教授: 余欣珊
Shin-Shan Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 101
中文關鍵詞: 暗物質希格斯玻色子夸克緊湊緲子線圈大型強子對撞機誤判率
外文關鍵詞: Dark matter, Higgs Boson, Quark, Compact Muon Solenoid, Large Hadron Collider, Mistagging scale factor
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超過26%的宇宙總能量密度來自暗物質的貢獻。然而,暗物質的性質仍是未知的並且無法用當前理論解釋。藉由來自緊湊緲子線圈質心能量為13兆電子伏特且41.5 fb^-1 總亮度的質子-質子碰撞數據,搜索暗物質與一個會衰減成一對底夸克的希格斯玻色子生成的成果將會被呈現。信號事件被標記為巨大的遺失橫向動量且正對著一對底夸克。然而,許多背景事件可以模仿真實信號並通過信號甄選。藉由比較模擬跟真實數據中背景事件通過底夸克標記甄選的比例,可以測量來自被判定為信號事件的背景事件的機率的校正因子。以此計算統計和系統不確定度的校正因子。


    More than 26% of the total energy density of the universe is composed of dark matter (DM). However, the properties of DM are still unknown and cannot be explained with the present information. A search for the DM produced in the presence of a Higgs boson decaying into a pair of bottom quarks is performed using proton-proton collision data collected at a center-of-mass energy of 13 TeV by CMS corresponding to an integrated luminosity of 41.5 fb^-1. The signal events are identified as a large missing transverse momentum recoiling against a pair of bottom quarks. However, many backgrounds can mimic this real signal and pass the signal selection. A scale factor of the possibility in detecting background events as signal events is measured by comparing the efficiency of background events passing b-tagging selection in the data and the simulation. Both statistical and systematic uncertainties on the scale factors are obtained.

    1 Introduction and Theory Overview 1 1.1 IntroductionandMotivation...................... 1 1.2 Theory .................................. 3 1.2.1 StandardModelParticles ................... 3 1.2.2 2HDMPlusPseudoscalaraExtensions . . . . . . . . . . . 4 1.2.2.1 TwoHiggsDoubletsModel ............ 5 1.2.2.2 Type-IITwoHiggsDoubletsModel........ 7 1.2.2.3 Type-II2HDM+a................... 9 1.2.2.4 Alignment/DecouplingLimit........... 10 1.2.2.5 HeavyPseudoscalarA ............... 10 1.2.2.6 LightPseudoscalara ................ 12 2 Experimental Apparatus: the LHC and the CMS Detector 15 2.1 LargeHadronCollider ......................... 15 2.2 CompactMuonSolenoid........................ 16 2.2.1 CMSCoordinateSystem.................... 16 2.2.2 SuperconductingMagnetSystem............... 17 2.2.3 InnerTrackingDetector .................... 18 2.2.3.1 PixelTracker ..................... 19 2.2.3.2 SiliconStripTracker................. 21 2.2.4 ElectromagneticCalorimeter ................. 23 2.2.5 HadronCalorimeter ...................... 24 2.2.6 MuonDetector ......................... 25 2.2.7 TriggerSystem ......................... 27 2.2.7.1 Level1TriggerSystem ............... 28 2.2.7.2 HighLevelTriggerSystem............. 28 3 Event Reconstruction 31 3.1 PrimaryVertexReconstruction .................... 31 3.2 Particle-FlowAlgorithm ........................ 32 3.3 PileupReconstruction ......................... 33 3.3.1 PUPPIAlgorithm........................ 33 3.3.2 CHSAlgorithm......................... 35 3.4 pTmiss Reconstruction............................ 35 3.5 JetsReconstructionandHiggsTagging. . . . . . . . . . . . . . . . 36 3.6 LeptonIdentification .......................... 38 3.7 EventSelection ............................. 39 4 Analysis Strategy 41 4.1 DataSetsandMonteCarloSamples ................. 42 4.1.1 DataSets............................. 42 4.1.2 MonteCarloSamples ..................... 42 4.2 Selection ................................. 43 4.2.1 DeepDoubleb-Tagger..................... 43 4.2.2 SignalSelection......................... 45 4.3 DataandMonteCarloComparison.................. 46 4.4 BackgroundEstimation......................... 48 5 Results, Systematic Uncertainty, and Discussion 53 5.1 Mistagging Scale Factor of the Deep Double b-Tagger . . . . . . . 53 5.2 SystematicUncertainty......................... 55 5.2.1 IntegratedLuminosity..................... 55 5.2.2 The Cross Sections of the Monte Carlo Samples . . . . . . 55 5.3 FinalResultsandDiscussion...................... 57 6 Conclusion and Outlook 63 6.1 Conclusion................................ 63 6.2 Outlook.................................. 63 Bibliography 65 A 73 A.1 DeepDoubleb-TaggerOptimization................. 73

    [1] F. Zwicky. “Republication of: The redshift of extragalactic nebulae”. en. In: Gen Relativ Gravit 41.1 (Jan. 2009), pp. 207–224. ISSN: 0001-7701, 1572- 9532. DOI: 10.1007/s10714-008-0707-4. URL: http://link. springer.com/10.1007/s10714-008-0707-4.

    [2] Vera C. Rubin and W. Kent Ford Jr. “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions”. en. In: ApJ 159 (Feb. 1970), p. 379. ISSN: 0004-637X, 1538-4357. DOI: 10.1086/150317. URL: http://adsabs.harvard.edu/doi/10.1086/150317.

    [3] Planck reveals an almost perfect Universe. en. URL: http : / / www . esa . int / Science _ Exploration / Space _ Science / Planck / Planck _ reveals_an_almost_perfect_Universe.

    [4] Yang Bai, Patrick J. Fox, and Harnik Roni. “The Tevatron at the frontier of dark matter direct detection”. English. In: Journal of High Energy Physics; Heidelberg 2010.12 (Dec. 2010). Place: Heidelberg, Netherlands, Heidel- berg Publisher: Springer Nature B.V. DOI: http://dx.doi.org/10. 1007/JHEP12(2010)048. URL: https://search.proquest.com/ docview/2397992990/abstract/285323CDFB254B8EPQ/1.

    [5] G. Aad et al. “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”. en. In: Physics Letters B 716.1 (Sept. 2012), pp. 1–29. ISSN: 0370-2693. DOI: 10.1016/j. physletb.2012.08.020. URL: http://www.sciencedirect.com/ science/article/pii/S037026931200857X.

    [6] S. Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. en. In: Physics Letters B 716.1 (Sept. 2012), pp. 30–61. ISSN: 0370-2693. DOI: 10.1016/j.physletb. 2012.08.021. URL: http://www.sciencedirect.com/science/ article/pii/S0370269312008581.

    [7] Jalal Abdallah et al. “Simplified Models for Dark Matter and Missing En- ergy Searches at the LHC”. In: arXiv:1409.2893 [hep-ex, physics:hep-ph] (Oct. 2014). arXiv: 1409.2893. URL: http://arxiv.org/abs/1409.2893.

    [8] Martin Bauer, Ulrich Haisch, and Felix Kahlhoefer. “Simplified dark mat- ter models with two Higgs doublets: I. Pseudoscalar mediators”. en. In: J. High Energ. Phys. 2017.5 (May 2017), p. 138. ISSN: 1029-8479. DOI: 10. 1007/JHEP05(2017)138. URL: https://doi.org/10.1007/ JHEP05(2017)138.

    [9] Charles Baltay. “Electroweak interaction”. en. In: Access Science (2019). Publisher: McGraw-Hill Education. DOI: 10 . 1036 / 1097 - 8542 . 227375. URL: https : / / www . accessscience . com / content / electroweak-interaction/227375.

    [10] Mark Thomson. Modern Particle Physics. en. Google-Books-ID: BV1sAAAAQBAJ. Cambridge University Press, Sept. 2013. ISBN: 978-1-107-03426-6.

    [11] Particle physics. en. Page Version ID: 995536046. Dec. 2020. URL: https: //en.wikipedia.org/w/index.php?title=Particle_physics& oldid=995536046.

    [12] Audrey Degée. “Higgs mechanism in the general Two-Higgs-Doublet Model”. en. In: (2009). M.Sc. Thesis, Université De Liége, p. 82.

    [13] G. C. Branco et al. “Theory and phenomenology of two-Higgs-doublet models”. en. In: Physics Reports. Theory and phenomenology of two- Higgs-doublet models 516.1 (July 2012), pp. 1–102. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2012.02.002. URL: http: / / www . sciencedirect . com / science / article / pii / S0370157312000695.

    [14] Sheldon L. Glashow and Steven Weinberg. “Natural conservation laws for neutral currents”. In: Phys. Rev. D 15.7 (Apr. 1977). Publisher: American Physical Society, pp. 1958–1965. DOI: 10.1103/PhysRevD.15.1958. URL: https://link.aps.org/doi/10.1103/PhysRevD.15.1958.

    [15] Emmanuel A. Paschos. “Diagonal neutral currents”. In: Phys. Rev. D 15.7 (Apr. 1977). Publisher: American Physical Society, pp. 1966–1972. DOI: 10. 1103/PhysRevD.15.1966. URL: https://link.aps.org/doi/10. 1103/PhysRevD.15.1966.

    [16] Seyda Ipek, David McKeen, and Ann E. Nelson. “Renormalizable model for the Galactic Center gamma-ray excess from dark matter annihilation”. In: Phys. Rev. D 90.5 (Sept. 2014). Publisher: American Physical Society, p. 055021. DOI: 10.1103/PhysRevD.90.055021. URL: https:// link.aps.org/doi/10.1103/PhysRevD.90.055021.

    [17] CERNYellowReportPageBR2014 < LHCPhysics < TWiki. URL: https : / / twiki . cern . ch / twiki / bin / view / LHCPhysics / CERNYellowReportPageBR2014.

    [18] The Large Hadron Collider | CERN. URL: https : / / home . cern / science/accelerators/large-hadron-collider.

    [19] The CMS Collaboration. “The CMS experiment at the CERN LHC”. en. In: J. Inst. 3.08 (Aug. 2008). Publisher: IOP Publishing, S08004–S08004. ISSN: 1748-0221. DOI: 10.1088/1748-0221/3/08/S08004. URL: https: //doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08004.

    [20] CMS | CERN. URL: https://home.cern/science/experiments/ cms.

    [21] latex:tikz [CMS Wiki Pages]. URL: https : / / wiki . physik . uzh . ch / cms/latex:tikz.

    [22] CERN. Geneva. LHC Experiments Committee et al., eds. The CMS tracker system project: Technical Design Report. eng. Technical Design Report CMS 5. Geneva: CERN, 1997. ISBN: 978-92-9083-124-2.

    [23] CERN. Geneva. LHC Experiments Committee and LHCC, eds. The CMS tracker: addendum to the Technical Design Report. eng. Technical Design Re- port CMS 5-add-1. Geneva: CERN, 2000.

    [24] The CMS Collaboration. “CMS Physics Technical Design Report, Volume II: Physics Performance”. en. In: J. Phys. G: Nucl. Part. Phys. 34.6 (Apr. 2007). Publisher: IOP Publishing, pp. 995–1579. ISSN: 0954-3899. DOI: 10. 1088/0954-3899/34/6/S01. URL: https://doi.org/10.1088/ 0954-3899/34/6/s01.

    [25] M Atac et al. “Beam test results of the US-CMS forward pixel detector”. en. In: Nuclear Instruments and Methods in Physics Research Section A: Accel- erators, Spectrometers, Detectors and Associated Equipment 488.1 (Aug. 2002), pp. 271–281. ISSN: 0168-9002. DOI: 10.1016/S0168-9002(02)00472- 2. URL: http://www.sciencedirect.com/science/article/ pii/S0168900202004722.

    [26] S. Braibant et al. “Investigation of design parameters for radiation hard sil- icon microstrip detectors”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 485.3 (2002), pp. 343 –361. ISSN: 0168-9002. DOI: https : //doi.org/10.1016/S0168-9002(01)02120-9. URL: http : / / www . sciencedirect . com / science / article / pii / S0168900201021209.

    [27] D. Abbaneo et al. “Status report on the CMS forward muon upgrade with large-size triple-GEM detectors”. In: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference and 21st Symposium on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors. 2016, p. 7431236. DOI: 10. 1109/NSSMIC.2014.7431236.

    [28] CERN. Geneva. LHC Experiments Committee., ed. CMS TriDAS project: Technical Design Report, Volume 1: The Trigger Systems. eng. Technical De- sign Report CMS 6.1.

    [29] The CMS Trigger and Data Acquisition Group. “The CMS High Level Trig- ger”. In: Eur. Phys. J. C 46.3 (June 2006). arXiv: hep-ex/0512077 version: 1, pp. 605–667. ISSN: 1434-6044, 1434-6052. DOI: 10.1140/epjc/s2006- 02495-8. URL: http://arxiv.org/abs/hep-ex/0512077.

    [30] SWGuideEJTermbTaggingTutorial < CMSPublic < TWiki. URL: https : / / twiki . cern . ch / twiki / bin / view / CMSPublic / SWGuideEJTermbTaggingTutorial (visited on 12/31/2020).

    [31] Index of /home/karimaki/CMHEP/Lectures. URL: https : / / www . mv . helsinki . fi / home / karimaki / CMHEP / Lectures/ (visited on 12/31/2020).

    [32] Susanna Cucciarelli. “Track and Vertex Reconstruction with the CMS De- tector”. en. In: (2005), p. 33.

    [33] The CMS collaboration. “Search for associated production of dark mat- ter with a Higgs boson decaying to bb or γγ at √s = 13 TeV”. en. In: J. High Energ. Phys. 2017.10 (Oct. 2017), p. 180. ISSN: 1029-8479. DOI: 10. 1007/JHEP10(2017)180. URL: https://doi.org/10.1007/ JHEP10(2017)180.

    [34] A.M. Sirunyan et al. “Particle-flow reconstruction and global event de- scription with the CMS detector”. en. In: J. Inst. 12.10 (Oct. 2017), P10003– P10003. ISSN: 1748-0221. DOI: 10.1088/1748-0221/12/10/P10003. URL: https://iopscience.iop.org/article/10.1088/1748- 0221/12/10/P10003.

    [35] Daniele Bertolini et al. “Pileup per particle identification”. en. In: J. High Energ. Phys. 2014.10 (Oct. 2014), p. 59. ISSN: 1029-8479. DOI: 10. 1007/JHEP10(2014)059. URL: https://doi.org/10.1007/ JHEP10(2014)059.

    [36] Andrea Malara. “Reconstruction of jets and missing transverse momen- tum at the CMS experiment: Run 2 and perspective for Run 3”. In: arXiv:2012.06271 [hep-ex] (Dec. 2020). arXiv: 2012.06271. URL: http:// arxiv.org/abs/2012.06271.

    [37] Jehad Mousa et al. “Pileup mitigation at CMS in 13 TeV data”. In: Journal of Instrumentation 15 (Sept. 2020), P09018–P09018. DOI: 10.1088/1748- 0221/15/09/P09018.

    [38] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet user man- ual”. en. In: Eur. Phys. J. C 72.3 (Mar. 2012), p. 1896. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-012-1896-2. URL: https://doi.org/10. 1140/epjc/s10052-012-1896-2.

    [39] Matteo Cacciari and Gavin P. Salam. “Pileup subtraction using jet ar- eas”. en. In: Physics Letters B 659.1 (Jan. 2008), pp. 119–126. ISSN: 0370-2693. DOI: 10 . 1016 / j . physletb . 2007 . 09 . 077. URL: http : / / www . sciencedirect . com / science / article / pii / S0370269307011094.

    [40] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The catchment area of jets”. en. In: J. High Energy Phys. 2008.04 (Apr. 2008). Publisher: Springer Science and Business Media LLC, pp. 005–005. ISSN: 1126-6708. DOI: 10. 1088/1126-6708/2008/04/005. URL: https://doi.org/10. 1088%2F1126-6708%2F2008%2F04%2F005.

    [41] The CMS Collaboration. “Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at √s = 13 TeV”. en. In: Eur. Phys. J. C 79.3 (Mar. 2019), p. 280. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-019-6730-7. URL: https://doi.org/10.1140/epjc/s10052-019-6730-7.

    [42] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-ktjet clus- tering algorithm”. en. In: J. High Energy Phys. 2008.04 (Apr. 2008). Pub- lisher: Springer Science and Business Media LLC, pp. 063–063. ISSN: 1126- 6708. DOI: 10.1088/1126-6708/2008/04/063. URL: https://doi. org/10.1088%2F1126-6708%2F2008%2F04%2F063.

    [43] Andrew J. Larkoski et al. “Soft drop”. en. In: J. High Energ. Phys. 2014.5 (May 2014), p. 146. ISSN: 1029-8479. DOI: 10.1007/JHEP05(2014)146. URL: https://doi.org/10.1007/JHEP05(2014)146.

    [44] The CMS Collaboration. “Performance of electron reconstruction and se- lection with the CMS detector in proton-proton collisions at √s = 8 TeV”. en. In: J. Inst. 10.06 (June 2015), P06005–P06005. ISSN: 1748-0221. DOI: 10. 1088/1748-0221/10/06/P06005. URL: https://iopscience. iop.org/article/10.1088/1748-0221/10/06/P06005.

    [45] The CMS collaboration. “Performance of CMS muon reconstruction in pp collision events at √s = 7 TeV”. en. In: J. Inst. 7.10 (Oct. 2012). Publisher: IOP Publishing, P10002–P10002. ISSN: 1748-0221. DOI: 10.1088/1748- 0221/7/10/P10002. URL: https://doi.org/10.1088%2F1748- 0221%2F7%2F10%2Fp10002.

    [46] R. Boniecki. “Tau Identification and Reconstruction at the CMS”. en. In: Acta Phys. Pol. B 44.7 (2013), p. 1379. ISSN: 0587-4254, 1509-5770. DOI: 10. 5506/APhysPolB.44.1379. URL: http://www.actaphys.uj.edu. pl/vol44/abs/v44p1379.

    [47] The CMS Collaboration. “Reconstruction and identification of τ lepton de- caystohadronsandντ atCMS”.en.In:J.Inst.11.01(Jan.2016).Publisher: IOP Publishing, P01019–P01019. ISSN: 1748-0221. DOI: 10.1088/1748- 0221/11/01/P01019. URL: https://doi.org/10.1088%2F1748- 0221%2F11%2F01%2Fp01019.

    [48] Praveen Chandra Tiwari and CMS collaboration. “Heavy flavour iden- tification at CMS”. en. In: Proceedings of The 39th International Conference on High Energy Physics — PoS(ICHEP2018). Seoul, Korea: Sissa Medialab, Aug. 2019, p. 898. DOI: 10.22323/1.340.0898. URL: https://pos. sissa.it/340/898.

    [49] Peter Ba ̈rnreuther. “Top quark pair production at the LHC”. In: (2012). Ph.D. Thesis, RWTH Aachen.

    [50] Johan Alwall et al. “MadGraph 5: going beyond”. en. In: J. High En- erg. Phys. 2011.6 (June 2011), p. 128. ISSN: 1029-8479. DOI: 10 . 1007 / JHEP06(2011)128. URL: https://doi.org/10.1007/ JHEP06(2011)128.

    [51] Daniel Guest et al. “Jet flavor classification in high-energy physics with deep neural networks”. In: Phys. Rev. D 94.11 (Dec. 2016). Publisher: Amer- ican Physical Society, p. 112002. DOI: 10.1103/PhysRevD.94.112002. URL: https://link.aps.org/doi/10.1103/PhysRevD.94. 112002.

    [52] Michelangelo L. Mangano et al. “Matching matrix elements and shower evolution for top-pair production in hadronic collisions”. en. In: J. High Energy Phys. 2007.01 (Jan. 2007). Publisher: Springer Science and Business Media LLC, pp. 013–013. ISSN: 1126-6708. DOI: 10.1088/1126-6708/ 2007/01/013. URL: https://doi.org/10.1088\%2F1126-6708\ %2F2007\%2F01\%2F013.

    [53] Carlo Oleari. “The POWHEG-BOX”. In: Nuclear Physics B - Proceed- ings Supplements 205-206 (Aug. 2010). arXiv: 1007.3893, pp. 36–41. ISSN: 09205632. DOI: 10.1016/j.nuclphysbps.2010.08.016. URL: http: //arxiv.org/abs/1007.3893.

    [54] The CMS Collaboration. “Search for Dark Matter Particles Produced in Association with a Top Quark Pair at √s = 13 TeV”. en. In: Phys. Rev. Lett. 122.1 (Jan. 2019), p. 011803. ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett.122.011803. URL: https://link.aps.org/doi/ 10.1103/PhysRevLett.122.011803.

    [55] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. en. In: Com- puter Physics Communications 191 (June 2015), pp. 159–177. ISSN: 0010- 4655. DOI: 10.1016/j.cpc.2015.01.024. URL: http: / / www . sciencedirect . com / science / article / pii / S0010465515000442.

    [56] The CMS Collaboration. “Extraction and validation of a new set of CMS Pythia8 tunes from underlying-event measurements”. en. In: Eur. Phys. J. C 80.1 (Jan. 2020), p. 4. ISSN: 1434-6044, 1434-6052. DOI: 10.1140/epjc/ s10052-019-7499-4. URL: http://link.springer.com/10. 1140/epjc/s10052-019-7499-4.

    [57] Pierre Artoisenet et al. “Automatic spin-entangled decays of heavy res- onances in Monte Carlo simulations”. In: J. High Energ. Phys. 2013.3 (Mar. 2013). arXiv: 1212.3460, p. 15. ISSN: 1029-8479. DOI: 10 . 1007 / JHEP03(2013)015. URL: http://arxiv.org/abs/1212.3460.

    [58] DMAnalysisFullRunII CMS TWiki. URL: https : / / twiki . cern . ch / twiki/bin/viewauth/CMS/DMAnalysisFullRunII.

    [59] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. EN. In: Ann. Math. Statist. 22.1 (Mar. 1951). Publisher: Institute of Mathematical Statistics, pp. 79–86. ISSN: 0003-4851, 2168-8990. DOI: 10.1214/aoms/ 1177729694. URL: https://projecteuclid.org/euclid.aoms/ 1177729694.

    [60] Mauro Verzetti. “Machine learning techniques for jet flavour identification at CMS”. In: EPJ Web of Conferences 214 (Jan. 2019), p. 06010. DOI: 10. 1051/epjconf/201921406010.

    [61] The CMS Collaboration. “Observation of the Production of Three Massive Gauge Bosons at √s = 13 TeV”. en. In: Phys. Rev. Lett. 125.15 (Oct. 2020), p. 151802. ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett. 125.151802. URL: https://link.aps.org/doi/10.1103/ PhysRevLett.125.151802.

    [62] M. Tanabashi et al. (Particle Data Group). “Review of Particle Physics”. In: Phys. Rev. D 98 (3 2018), p. 030001. DOI: 10.1103/PhysRevD.98. 030001. URL: https://link.aps.org/doi/10.1103/PhysRevD. 98.030001.

    [63] Philip Dießner et al. “Measurement of identification efficiency of electrons with close-by jets using ATLAS 2011 data”. In: (2011), p. 21. URL: https: //www.zeuthen.desy.de/students/2011/reports/ReportJP. pdf.

    [64] Kai O. Arras. An Introduction To Error Propagation: Derivation, Meaning and Examples of Equation Cy= Fx Cx FxT. en. Tech. rep. Artwork Size: 22 p. Medium: application/pdf. ETH Zurich, 1998, 22 p. DOI: 10.3929/ETHZ- A-010113668. URL: http://hdl.handle.net/20.500.11850/ 82620.

    [65] CMS luminosity measurement for the 2017 data-taking period at √s = 13 TeV. Tech. rep. CMS-PAS-LUM-17-004. Geneva: CERN, 2018. URL: https:// cds.cern.ch/record/2621960.

    [66] StandardModelCrossSectionsat13TeV CMS TWiki. URL: https : / / twiki . cern . ch / twiki / bin / viewauth / CMS / StandardModelCrossSectionsat13TeV.

    [67] SingleTopRefXsec LHCPhysics TWiki. URL: https://twiki.cern.ch/ twiki/bin/view/LHCPhysics/SingleTopRefXsec.

    [68] Giovanni Punzi. “Sensitivity of searches for new signals and its optimiza- tion”. In: arXiv:physics/0308063 (Dec. 2003). arXiv: physics/0308063. URL: http://arxiv.org/abs/physics/0308063.

    QR CODE
    :::