跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅雅殷
Ya-Yin Lo
論文名稱: CMOS微波疊接放大器之設計
Design of CMOS Microwave Cascode Amplifier
指導教授: 傅家相
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: CMOS
外文關鍵詞: CMOS
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主題是單級疊接放大器在毫米波頻段的分析及其設計。
    我們利用電路模擬軟體找出在不同電晶體大小與不同電晶體閘極偏壓
    下我們所需的增益,再設計匹配電路使其有足夠的穩定度與返回損
    耗。
    在第二章中,我們使用TSMC 0.18-μm CMOS 製程模擬單級疊接
    放大器進行分析,我們先固定電晶體的寬度,改變電晶體閘極偏壓和
    finger 模擬24 GHz 和35 GHz 時最大可得增益、穩定因子、NFmin、
    直流功耗的趨勢。並使用負載拉移模擬得到不同的電晶體尺寸和電晶
    體閘極偏壓下和中心頻分別為24 GHz 和35 GHz 時的最大功率增進
    效率和最大輸出功率,與其對應的增益和負載阻抗。
    在第三章中,我們使用TSMC 0.18-μm CMOS 製程設計一個中心
    頻在35 GHz 的單級疊接放大器,在3.3 V 的供應電壓下,期望可有
    6 dB 的增益,匹配網路使用L section 的方式設計,匹配電容為MIM
    電容,短路殘段的部分則使用全波電磁分析(EM)模擬替代匹配電
    感帶入電路中。模擬結果為輸入返回損耗大於20 dB,輸出返回損耗
    大於20 dB,增益大於7.6 dB,直流功耗為58.9 mW。。然而量測結
    果顯示輸入返回損耗大於16 dB,輸出返回損耗大於3.4 dB,增益大
    於3.7 dB,直流功耗為54.45 mW。我們發現造成增益下降的主要原
    因可能為輸出損耗比我們預想的大,因此在偵錯的重新模擬中我們在
    輸出端串聯一個電感後再重新匹配,重新模擬結果確實能較為貼和量
    測結果。
    本論文成功設計了單級疊接放大器,雖然量測結果與模擬結果相
    去甚遠,但經過重新模擬,已可推測造成此差異的部分原因。


    The subject of this paper is the design and analysis of single-stage
    cascode amplifiers. We use circuit simulation software to find out the
    gain we need under different transistor sizes and different transistor gate
    bias voltages, and then design the matching circuit to have sufficient
    stability and return loss.
    In Chapter 2, we use the TSMC 0.18-μm CMOS process to simulate
    a single-stage stacked amplifier for analysis. We first fix the width of the
    transistor, change the gate bias voltage of the transistor, and simulate
    the maximum gain at 24 GHz and 35 GHz with a finger. Stability,
    NFmin, DC power consumption trends. And use load pull simulation
    to obtain the maximum power added efficiency and maximum output
    power of different transistor size and transistor gate bias and center
    frequency of 24 GHz and 35 GHz, respectively, corresponding to them
    the gain and load impedance.
    In Chapter 3,we use TSMC 0.18-μm CMOS process to design a
    single-stage cascode amplifier with a center frequency of 35 GHz. Under
    a supply voltage of 3.3 V, it is expected to have a gain of 6 dB.
    The matching network uses L section The matching capacitor is a MIM
    capacitor, and the part of the short-circuit stub is brought into the circuit
    using full-wave electromagnetic analysis (EM) simulation instead
    of matching inductance. The simulation result is that the input return
    loss is greater than 20 dB, the output return loss is greater than 20 dB,
    the gain is greater than 7.6 dB, and the DC power consumption is 58.9
    II
    mW. . However, the measurement results show that the input return
    loss is greater than 16 dB, the output return loss is greater than 3.4
    dB, the gain is greater than 3.7 dB, and the DC power consumption is
    54.45 mW. We found that the main reason for the decrease in gain may
    be that the output loss is larger than we expected. Therefore, in the
    re-simulation of debugging, connect an inductor in series at the output
    terminal and then re-match. The re-simulation results can indeed be
    more consistent with the measurement results.
    This paper has successfully designed a single-stage cascode amplifier.
    Although the measurement results are far from the simulation
    results, after re-simulation, part of the reason for this difference can be
    inferred.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . 3 第二章疊接放大器分析. . . . . . . . . . . . . . . . . . . . . . 5 2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 小訊號分析. . . . . . . . . . . . . . . . . . . . . . . 7 2.3 負載拉移(Loadpull)分析. . . . . . . . . . . . . . 17 2.3.1 最大功率增進效率分析. . . . . . . . . . . . . . . . 17 2.3.2 最大輸出功率分析. . . . . . . . . . . . . . . . . . . 23 2.3.3 結論. . . . . . . . . . . . . . . . . . . . . . . . . . 27 第三章單級疊接放大器. . . . . . . . . . . . . . . . . . . . . . 29 3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 疊接放大器設計. . . . . . . . . . . . . . . . . . . . 30 3.2.1 電路模擬結果. . . . . . . . . . . . . . . . . . . . . 34 3.3 電路量測結果. . . . . . . . . . . . . . . . . . . . . 37 3.3.1 量測與偵錯結果比較. . . . . . . . . . . . . . . . . . 43 3.4 結果與討論. . . . . . . . . . . . . . . . . . . . . . . 55 第四章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    [1] D. K. Garg, V. Kumar, Y. V. M. M. Kumar, and S. Chaturvedi, “Low noise
    amplifier at Ka band,” 2017 IEEE MTT-S International Microwave and RF
    CONference(IMaRC), p. 1-4, 2017.
    [2] J.-H. Tsai, W.-C. Chen, T.-P. Wang, T.-W. Huang, and H. Wang, “A miniature
    Q-band low noise amplifier using 0.13-μm CMOS technology,” IEEE Microwave
    and Wireless Components Letters, vol. 16, no. 6, p. 327-329, Jun 2006.
    [3] F. Ellinger, “26–42 GHz SOI CMOS low noise amplifier,” IEEE Journal of Solid-
    State Circuits, vol. 39, no. 3, p. 522-528, Mar 2004.
    [4] H. Yeh, C.-C. Chiong, and H. Wang, “A low voltage Q-band CMOS LNA
    with magnetic coupled cascade topology,” 2012 IEEE MTT-S International Microwave
    Symposium Digest, p. 1-3, 2012.
    [5] H. Shigematsu, T. Hirose, and F. Brewer, “Millimeter-wave CMOS circuit design,”
    IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 2,
    p. 472-477, Feb 2005.
    [6] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave
    CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, p. 144-155,
    Jan 2005.
    [7] B. Huang, K. Lin, H. Wang, and F. Brewer, “Millimeter-wave low power and
    miniature CMOS multicascode low noise amplifier with noise reduction topology,”
    Proc. IRE (Correspondence), vol. 57, no. 12, p. 3049-3059, Dec 2009.
    [8] D. W. Park, D. R. Utomo, B. Yun, H. U. Mahmood, J. P. Hong, and S. G. Lee,
    “Design of high-gain sub-THz regenerative amplifiers based on double- Gmax gain
    boosting technique,” in IEEE Journal of Solid-State Circuits, p. 1-1, July 2021.
    [9] D. Park, D. R. Utomo, B. H. Lam, S. Lee, and J. Hong, “A 230–260-GHz wideband
    and high-gain amplifier in 65-nm CMOS based on dual-peak Gmax-core,”
    in IEEE Journal of Solid-State Circuits, vol. 54, no. 6, p. 1613-1623, Jun 2019.

    QR CODE
    :::