跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊永光
Yung-Kuang Yang
論文名稱: 圓錐-圓柱環面液壓軸承數值模擬與應用設計之研究
指導教授: 鄭銘章
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 141
中文關鍵詞: 能量方程式熱效應壓力分佈無因次化
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於液壓軸承具有低摩阻、快反應、高精度和穩定性的特點,所以本文研討對象為圓錐環面形狀結構的液壓軸承,它是平面滑動軸承(Slider Bearing)與軸頸軸承(Journal Bearing)的組合;分析內容為潤滑油流體的黏度在等黏性和受到熱效應影響時,並且考慮活塞桿的偏心率和不對稱因子之效應,應用數值運算分析討論軸承性能參數之變化。在等黏性的分析發現,當軸承厚度肩長比為0.8時,具有最大的正向負荷承載能力,和偏心率與不對稱因子的效應兩者同時存在時,正向負荷承載能力就會降低。熱效應的分析則獲得了活塞桿速度小於 時,以及圓周方向的油膜流速對軸承性能參數之影響是非常有限(小於2 %)。最後並將這種液壓軸承之原理應用於油壓缸結構的設計,經由實驗量測驗證了液壓軸承的油壓缸結構比低摩阻油封的油壓缸結構,具有低的摩擦阻力和快的運動速度。


    摘要………………………………………………………………………I 誌謝………………………………………………………………………II 總目錄…………………………………………………………………III 圖目錄…………………………………………………………………VI 表目錄…………………………………………………………………XIV 符號說明………………………………………………………………XV 第一章緒論……………………………………………………………1 1.1 簡介……………………………………………………………1 1.2 文獻回顧………………………………………………………5 第二章理論說明………………………………………………………10 2.1 圓錐液壓軸承的結構…………………………………………10 2.1.1 單圓錐-圓柱環面軸承之幾何形狀……………………12 2.1.2 雙圓錐-圓柱環面軸承之幾何形狀……………………13 2.2 等黏性情況的構成方程式…………………………………14 2.2.1 雷諾方程式………………………………………………15 2.2.2 簡化雷諾方程式…………………………………………21 2.2.3 壓力邊界條件……………………………………………21 2.3 熱(溫度)效應情況…………………………………………23 2.3.1 流速方程式………………………………………………23 2.3.2 油膜的能量方程式………………………………………24 2.3.3 軸承的能量方程式………………………………………25 2.3.4 油膜的黏度-溫度之關係………………………………25 2.4 二維能量方程式情況…………………………………………26 2.5 計算軸承性能參數…………………………………………28 2.5.1 正向負荷承載能力………………………………………28 2.5.2 摩擦係數…………………………………………………28 2.5.3 容積流率…………………………………………………29 2.6 無因次化分析…………………………………………………30 2.6.1 油膜厚度之幾何形狀……………………………………30 2.6.2 等黏性情況………………………………………………31 2.6.3 熱效應情況………………………………………………32 2.6.4 二維能量方程式情況……………………………………35 2.6.5 軸承性能參數……………………………………………35 第三章數值解法………………………………………………………37 3.1 雷諾方程式的差分格式………………………………………37 3.2 邊界條件的處理………………………………………………41 3.3 疊代過程………………………………………………………43 3.4 連續鬆弛(SOR)解法…………………………………………44 3.5 演算法…………………………………………………………46 3.6 演算法的穩定性與收斂性……………………………………47 3.7 熱效應方程式的差分格式……………………………………48 第四章計算分析結果與討論…………………………………………50 4.1 等黏性情況……………………………………………………50 4.2 熱效應情況……………………………………………………55 4.3 二維與三維能量方程式情況…………………………………61 4.4 等黏性和二維與三維能量方程式熱效應等情況之比較……68 第五章設計製造與實驗………………………………………………71 5.1 設計參數值……………………………………………………71 5.2 設計機件加工圖面……………………………………………72 5.3 實驗量測與結果………………………………………………72 5.3.1 實驗量測儀器之功能說明………………………………73 5.3.2 實驗量測之結果…………………………………………74 第六章結論……………………………………………………………77 第七章未來的研究方向………………………………………………79 參考文獻………………………………………………………………136 附件一:三年內參考著作……………………………………………139 附件二:學經歷………………………………………………………141

    1.Ezzat, H. A., and Rohde, S. M.,“A Study of the ermohydrodynamic Performance of Finte Slider Bearings,” ASME Journal of Lubrication Technology, Vol. 95, pp. 298~307 (1973).
    2.Hamrock, B. J., “Fundamentals of Fluid Film Lubrication,” McGraw-Hill Book Co., Singapore, pp. 57~63, and pp. 141~186 (International Editions 1994).
    3.Viersma, T. J., “Analysis, Synthesis and Design of Hydraulic Servosystems and Pipelines,” Elsevier Scientific Publishing Co., pp. 231~275 (1980).
    4.Buckholz, R. H., and Lin, J. F., “The Effect of Journal Bearing Misalignment on Load and Cavitation for Non-Newtonian Lubricants,” ASME Journal of Tribology, Vol. 108, pp. 645~654 (1986).
    5.Jang, J. Y., and Chang, C. C., “Adiabatic Solution for a Misaligned Journal Bearing with Non-Newtonian Lubricants,” Tribology International, Vol. 20 No.5, pp. 267~274 (1987).
    6.Stachowiak, G. W., and Batchelor, A. W., “Engineering Tribology,” Elsevier Science Publishers B, Tribology Series, 24, pp. 18~27, and pp. 240~259 (1993).
    7.Gross, W. A., Matsch, L. A., Castelli, V., Eshel, A., Vohr, J.H., and Wildmann, M., “Fluid Film Lubrication,” John Wiley & Sons, Inc., Canada, pp. 75~109 (1980).
    8.Williams, J. A., “Engineering Tribology,” Oxford University Press Inc., New York pp. 232~255 (Reprinted with corrections 1996).
    9.Fuller, D. D., “Theory and Practice of Lubrication for Engineers,” John Wiley & Sons, Inc., USA, pp. 203~231 (Second Edition 1984).
    10.Reedy, S. W., and Kirk, R. G., “Analysis of Thermal Gradient Effects in Oil Ring Seals,” Tribology Transactions, Vol. 33, pp. 425~435 (1990).
    11.Rohde, S. M. and Oh, K. P., “A Thermoelastohydrodynamic Analysis of a Finite Slider Bearing,” ASME Journal of Lubrication Technology, Vol. 97, pp. 450~460 (1975).
    12.Jeng, M. C., Zhou, G. R., and Szeri, A. Z., “A Thermohydrodynamic Solution of Pivoted Thrust Pads: Part I -Theory,” ASME Journal of Tribology, Vol. 108, pp. 195~207 (1986).
    13.Jeng, M. C., Zhou, G. R., and Szeri, A. Z., “A Thermohydrodynamic Solution of Pivoted Thrust Pads: Part II —Static Loading,” ASME Journal of Tribology, Vol. 108, pp. 208~113 (1986).
    14.Jang, J. Y., and Khonsari, M. M., “Thermohydrodynamic Design Charts for Slider Bearing,” ASME Journal of Tribology, Vol. 119, pp. 733~740 (1997).
    15.Khonsari, M. M., Jang, J. Y., and Fillon, M., “On the Generalization of Thermohydrodynamic Analyses for Journal Bearings,” ASME Journal of Tribology, Vol. 118, pp. 571~579 (1996).
    16.Rodkiewicz, Cz. M., Kim, K. W., and Kennedy, J. S., “On the Significance of the Inlet Pressure Build-Up in the Design of Tilting-Pad Bearings,” ASME Journal of Tribology, Vol. 112, pp. 17~22 (1990).
    17.Chun, S. M., and Lalas, D. P., “Parametric Study of Inlet Oil Temperature and Pressure for a Half-Circumferential Grooved Journal Bearing,” Tribology Transactions, Vol. 35, pp. 213~224 (1992).
    18.Safar, Z. S., Mokhtar, M. O. A., and Peeken, H. J., “Thermal Characteristics of Misaligned Finite Journal Bearing,” Tribology International, Vol. 18 No.1, pp. 13~16 (1985).
    19.Szeri, A. Z., “Tribology: Friction, Lubrication, and Wear,” McGraw-Hill Book Co., pp. 332~339 (1980).
    20.Kim, K. W., and Rodkiewicz, C. M., “On the Thermal Effects in the Design of Tilting-Pad Bearing Subjected to Inlet Pressure Build-Up,” ASME Journal of Tribology, Vol. 113, pp. 526~532 (1991).
    21.Lin, J. F., and Wang, L. Y., “Thermohydrodynamic Analysis of Finite-Width, Partial-arc Journal Bearings with Non-Newtonian Lubricants: Part II,” Tribology International, Vol. 23 No.3, pp. 211~216 (1990).
    22.Khonsari, M. M., and Wang, S. H., “On The Fluid-Solid Interaction in Reference to Thermohydrodynamic Analysis of Journal Bearings,” ASME Journal of Tribology, Vol. 113, pp. 398~403 (1991).
    23.Rajalinghan, C., Prabhu, B. S., Bhat, R. B., and Xistris, G. D., “Influence of Thermal Conduction Across the Fluid Film on the THD Characteristics of a Plain Journal Bearing,” ASME Journal of Tribology, Vol. 116, pp. 397~399 (1994).
    24.Bahder, T. B., “Mathematica for Scientists and Engineers,” Addison-Wesley Publishing Co. (1995).
    25.Wolfram, S., “Mathematica: A System for Doing Mathematicatics by Computer,” Addision-Wesley Publishing Co. (1994).
    26.潘誌銘,“圓錐液壓軸承之數值模擬與分析”,國立中央大學機械研究所,碩士論文,中華民國 八十九 年 六 月。
    27.Boncompain, R., Fillon, and M., Frene, J., “Analysis of Thermal Effects in Hydrodynamic Bearing,” ASME Journal of Tribology, Vol. 108, pp. 219~224 (1986).
    28.Bhushan, B., and Gupta, B. K., “Handbook of Tribology,” McGraw-Hill, Inc., New York, pp. 11~115 (1991).

    QR CODE
    :::