跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳建宏
Chien-Hung Chen
論文名稱: 疏水性抗反射BEA沸石膜
Preparation of Anti-Reflective BEA zeolite coating on glass
指導教授: 蔣孝澈
AST Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 抗反射膜溶膠凝膠法沸石
外文關鍵詞: sol-gel coating, Anti-reflection film, Zeolite
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於MFI沸石,BEA沸石擁有較多的孔隙率,因此也適合用於低折射率材料的製作,對於折射率為1.52的玻璃基板而言,理想的抗反射膜其折射率為
    1.23,要做出低折射率材料的方法,就是使用高孔隙性材料,對二氧化矽來說,其孔隙率要超過60%才能達到理想的抗反射效果。
    本實驗的目的是增強抗反射膜的機械性質,並且維持抗反射效果。本研究中所使用的鍍膜方式為玻璃基板的雙面浸鍍,鍍膜液是由沸石溶膠、界面活性劑和乙醇所組成,研究中所要討論的控制變因有三個:(1)沸石前驅物和奈米結晶粒子的比例(MFI和BEA沸石)(2)熱處理方法(3)後處理步驟(鹼液震洗、撥水劑疏水改質),目的是找出能夠提升膜的機械強度並維持其理想抗反射效果(反射率小於1%)之適當配方、熱處理方法和對沸石膜做後處理步驟,最後會對膜做光學和機械性質的測試。


    Compare to MFI zeolite,BEA zeolite has more porosity, so it is an ideal low-refractive material. For a glass substrate (ns=1.52), an ideal homogeneous AR l-ayer would need an index of 1.23. The easy way to achieve such a low inde-x is a porous coating. However, in most cases this would mean a porosity larger than 60% for silica.
    The goal of this research is to strengthen AR film and still have good anti-reflection effect. AR layers were prepared by dip-coating both sides of glass substrates with a sol made form a combination of nano-zeolite precursors, surfa-ctant and ethanol.
    The major variables investigated were the recipe(the ratio of concentrated zeolite precur- sor and nano crystal particle) , the heat treatment method after coating, the film was washed in alkaline solution with ultrasonic by cleaning up the amorphous layer,and hydrophobic-modification by silane to against scratch resistance. The reflectivity and mechanical strength of the obtained coatings was studied to identify the best recipe and heat treatment, along with critical issues such as adhesion strength, scratch resistance.

    目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 序論 1 1.1 沸石簡介 1 1.2 BEA沸石 2 1.3 MFI沸石 3 1.3 抗反射膜簡介 4 第二章 文獻回顧 7 2.1 奈米沸石的成長 7 2.2 抗反射膜之製鍍方法 8 第三章 奈米沸石鍍膜液與抗反射膜之製備和鑑定 12 3.1 實驗用藥品 12 3.2 奈米沸石之製備 13 3.2.1沸石前驅物與沸石結晶之合成步驟 13 3.3 奈米沸石之鑑定 18 3.3.1動態雷射粒徑儀(DLS) 18 3.3.2 傅立葉紅外線光譜儀(FTIR) 18 3.3.3 粉末X-ray繞射儀(PXRD) 19 3.3.4 掃瞄式電子顯微鏡(SEM) 20 3.3.5 高速離心 20 3.3.6 熱重損失(TGA) 21 3.4 抗反射沸石膜之製備 21 3.4.1 基材前處理與鍍膜流程 21 3.4.2抗反射沸石膜之控制變因研究 23 3.4.2.1 鍍膜液配方 23 3.4.2.2 熱處理步驟 24 3.4.2.3鹼液震洗 25 3.4.2.4 撥水劑之疏水處理 25 3.5光學性質鑑定 26 3.6機械性質測試 26 3.6.1 鉛筆硬度與微小硬度計測試 27 第四章 MFI沸石鍍膜液和抗反射膜之結果與討論 28 4.1動態雷射粒徑儀(DLS)分析 28 4.2 傅立葉紅外線光譜儀(FTIR)分析 29 4.3 粉末X-ray繞射儀(PXRD)分析 31 4.4 掃瞄式電子顯微鏡(SEM)分析 32 4.5 高速離心分析 33 4.6 光譜分析 34 第五章 BEA沸石鍍膜液和抗反射膜之結果與討論 36 5.1 BEA沸石鍍膜液之分析 36 5.1.1動態雷射粒徑儀(DLS)分析 36 5.1.2 傅立葉紅外線光譜儀(FTIR)分析 38 5.1.3 粉末X-ray繞射儀(PXRD)分析 40 5.1.4 掃瞄式電子顯微鏡(SEM)分析 41 5.1.5 高速離心分析 42 5.1.6 熱重損失(TGA)分析 43 5.2抗反射沸石膜之控制變因研究 44 5.2.1鍍膜液配方之影響 44 5.2.1.1光譜分析 46 5.2.2 熱處理方法之影響 48 5.2.2.1光譜分析 49 5.2.2.2 XRR之分析 51 5.2.2.3 GISAXS之分析 53 5.2.3 膜之後處理步驟 55 5.2.3.1 鹼液震洗 55 5.2.3.1.1光譜分析 56 5.2.3.1.3 XRR之分析 61 5.2.3.2 撥水劑之疏水處理 62 5.2.3.2.1 光譜分析 62 5.3製程參數設定之結論 65 第六章 結論與建議 66 參考文獻 68

    Reference List
    1. Schoeman, B. J.; Babouchkina, E.; Mintova, S.; Valtchev, V. P.; Sterte, J. The synthesis of discrete colloidal crystals of zeolite beta and their application in the preparation of thin microporous films. Journal of Porous Materials 2001, 8 (1), 13-22.
    2. 李正中 . 薄膜光學與鍍膜技術4 ed. 2004.
    Ref Type: Serial (Book,Monograph)
    3. Serrano, D. P.; van Grieken, R. Heterogenous events in the crystallization of zeolites. Journal of Materials Chemistry 2001, 11 (10), 2391-2407.
    4. Burkett, S. L.; Davis, M. E. Mechanisms of Structure Direction in the Synthesis of Pure-Silica Zeolites .1. Synthesis of Tpa/Si-Zsm-5. Chemistry of Materials 1995, 7 (5), 920-928.
    5. Schoeman, B. J. A high temperature in situ laser light-scattering study of the initial stage in the crystallization of TPA-silicalite-1. Zeolites 1997, 18 (2-3), 97-105.
    6. Schoeman, B. J. Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability. Microporous and Mesoporous Materials 1998, 22 (1-3), 9-22.
    7. De Moor, P. P. E. A.; Beelen, T. P. M.; van Santen, R. A. In situ observation of nucleation and crystal growth in zeolite synthesis. A small-angle X-ray scattering investigation on Si-TPA-MFI. Journal of Physical Chemistry B 1999, 103 (10), 1639-1650.
    8. Rimer, J. D.; Lobo, R. F.; Vlachos, D. G. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations. Langmuir 2005, 21 (19), 8960-8971.
    9. Rimer, J. D.; Roth, D. D.; Vlachos, D. G.; Lobo, R. F. Self-assembly and phase behavior of germanium oxide nanoparticles in basic aqueous solutions. Langmuir 2007, 23 (5), 2784-2791.
    10. 吳建昇 中央大學碩士論文; 08.
    11. 徐政業 中央大學碩士論文; 04.
    12. Chen, D. G. Anti-reflection (AR) coatings made by sol-gel processes: A review. Solar Energy Materials and Solar Cells 2001, 68 (3-4), 313-336.
    13. Crawford, L. J.; Edmonds, N. R. Calculation of film thickness for dip coated antireflective films. Thin Solid Films 2006, 515 (3), 907-910.
    14. Landau L.; Levich B Acta Phys.Chim; 42.
    15. Bornside D.E.; Macosko C.W.; Scriven L.E J.Imaging Tech; 87.
    16. Zayim, E. O. Optical and electrochromic properties of sol-gel made anti-reflective WO3-TiO2 films. Solar Energy Materials and Solar Cells 2005, 87 (1-4), 695-703.
    17. Zhang, X. T.; Fujishima, A.; Jin, M.; Emeline, A. V.; Murakami, T. Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties. Journal of Physical Chemistry B 2006, 110 (50), 25142-25148.
    18. Yamaguchi, N.; Tadanaga, K.; Matsuda, A.; Minami, T.; Tatsumisago, M. Antireflective properties of flowerlike alumina thin films on soda-lime silica glass substrates prepared by the sol-gel method with hot water treatment. Thin Solid Films 2007, 515 (7-8), 3914-3917.
    19. Kobler, J.; Abrevaya, H.; Mintova, S.; Bein, T. High-silica zeolite-beta: From stable colloidal suspensions to thin films. Journal of Physical Chemistry C 2008, 112 (37), 14274-14280.
    20. 黎孝怡 中央大學碩士論文; 08.
    21. Prevo, B. G.; Hwang, Y.; Velev, O. D. Convective assembly of antireflective silica coatings with controlled thickness and refractive index. Chemistry of Materials 2005, 17 (14), 3642-3651.
    22. Kragten, D. D.; Fedeyko, J. M.; Sawant, K. R.; Rimer, J. D.; Vlachos, D. G.; Lobo, R. F.; Tsapatsis, M. Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles. Journal of Physical Chemistry B 2003, 107 (37), 10006-10016.
    23. 許哲豪  中央大學碩士論文 ; 04.
    24. Groen, J. C.; Hamminga, G. M.; Moulijn, J. A.; Perez-Ramirez, J. In situ monitoring of desilication of MFI-type zeolites in alkaline medium. Physical Chemistry Chemical Physics 2007, 9 (34), 4822-4830.
    25. Wang, Z. B.; Wang, H. T.; Mitra, A.; Huang, L. M.; Yan, Y. S. Pure-silica zeolite low-k dielectric thin films. Advanced Materials 2001, 13 (10), 746-749.
    26. Li, Z. J.; Johnson, M. C.; Sun, M. W.; Ryan, E. T.; Earl, D. J.; Maichen, W.; Martin, J. I.; Li, S.; Lew, C. M.; Wang, J.; Deem, M. W.; Davis, M. E.; Yan, Y. S. Mechanical and dielectric properties of pure-silica-zeolite low-k materials. Angewandte Chemie-International Edition 2006, 45 (38), 6329-6332.
    27. Grosso, D.; Boissiere, C.; Sanchez, C. Ultralow-dielectric-constant optical thin films built from magnesium oxyfluoride vesicle-like hollow nanoparticles. Nature Materials 2007, 6 (8), 572-575.
    28. Johnson, M. C.; Lew, C. M.; Yan, Y. S.; Wang, J. L. Hydrophobicity-dependent friction and wear of spin-on zeolite thin films. Scripta Materialia 2008, 58 (1), 41-44.
    29. Zhu, Y. Z.; Muller, T. E.; Lercher, J. A. Single Step Preparation of Novel Hydrophobic Composite Films for Low-k Applications. Advanced Functional Materials 2008, 18 (21), 3427-3433.

    QR CODE
    :::