跳到主要內容

簡易檢索 / 詳目顯示

研究生: 潘淑芳
Phua Soo Fan
論文名稱: A Similarity-Guided Spots Sorting Method to Increase the Dynamic Range of a Shack Hartmann Sensor
指導教授: 梁肇文
Chao-Wen Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 79
中文關鍵詞: 波前量測波前重建動態範圍
外文關鍵詞: Shack Hartmann, Spots Assignment, Spots Sorting, Quality Guided
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在Shack-Hartmann 波前感應器的資料處理中,正確地把光點分配到各個微透鏡是非常重要的。傳統的分配算法的限制斑點的量轉移到微透鏡的直徑的一半,從而限制了Shack Hartmann感應器的動態範圍。

    這項工作提出了擴展的動態範圍的Shack-Hartmann波前感應器的質量引導演算法。該算法提供了高動態範圍,並且準確度不受局部缺陷及光點遺失的影響。

    該演算法經由模擬的Shack-Hartmann點和實驗獲得的Shack-Hartmann點做測試,並與現有的演算法相比。我們對模擬結果和實際情況的數據進行了分析,並對它們之間的差異進行了討論。


    Assignment of spots to the correct lenslet is critically important to a Shack Hartmann wavefront sensor. Conventional assignment-algorithm limits the amount of spots shift to be half the lenslet diameter, thereby limiting the dynamic range of the sensor.

    This work presents a quality-guided algorithm to extend the dynamic range of a Shack-Hartmann wavefront sensor. The proposed algorithm offers a high dynamic range and excellent robustness.

    The algorithm is tested on both simulated Shack-Hartmann spots and experimentally captured Shack-Hartmann spots.. The performance of the proposed algorithm is compared with existing algorithms. Results from simulation and from real-case data are analyzed. Any discrepancies are discussed.

    Abstract Acknowledgement 摘要 I Abstract II Acknowledgement III Table of Contents IV Table of Figures VI Chapter 1: Introduction 1 1.1 Introduction to Shack Hartmann Wavefront Sensors 1 1.2 Motivation 2 1.3 Objective 3 Chapter 2: Shack Hartmann Wavefront Sensor 4 2.1 Historical Background 4 2.2 Measurement Principles of Shack-Hartmann Sensor 6 2.3 Selection of lenslet array and detector, 9 2.4 Dynamic range Vs. Sensitivity 10 Chapter 3: Literature Review 13 3.1 Software-based Approaches 13 3.1.1 Spiral: Local Similarity 15 3.1.2 Zernike Polynomial Extrapolation 17 3.1.3 Spline Extrapolation 18 3.2 Quality-guided Phase Unwrapping Algorithm 20 Chapter 4: Quality-Guided Algorithm 22 4.1 Priority Buffer 22 4.2 Location Prediction 25 4.2.1 Linear Prediction 26 4.2.2 Nonlinear Prediction 29 4.2.3 Slope Direction 31 Chapter 5: Results 36 5.1 Dynamic Range 37 5.2 Robustness to Missing Spots 45 5.3 Robustness to Local Defect 50 5.4 Computation Time 52 5.5 Experiments 53 5.6 Centroiding 60 5.7 Discussions 62 Chapter 6: Conclusion 64 Chapter 7: Future Work 65 References 66

    [1] J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," JOSA A, vol. 11, no. 7, pp. 1949 - 1957, 1994.
    [2] D. Malacara, and I. Ghozeil, "Hartmann, Hartmann-Shack, and Other Screen Tests," in Optical Shop Testing, New Jersey, John Wiley & Sons, Inc., 2007, pp. 361 - 397.
    [3] B. C. Platt, R. Shack, "History and Principles of Shack-Hartmann Wavefront Sensing," Journal of Refractive Surgery, vol. 17, pp. S571 - S577, 2001.
    [4] G. Yoon, "Wavefront Sensing and Diagnostic Uses," in Adaptive Optics for Vision Science, John Wiley & Sons, Inc., 2006, pp. 63 - 81.
    [5] D. G. Smith, E. Goodwin and J. E. Greivenkamp, "Important considerations when using the Shack-Hartmann method for testing highly aspheric optics," in Proceedings of SPIE, Optical Manufacturing and Testing V, 2003.
    [6] J. E. Greivenkamp; D.l G. Smith, "Graphical approach to Shack-Hartmann lenslet array design," Optical Engineering, vol. 47, no. 6, p. 063601, 2008.
    [7] G. Yoon, "Wavefront Sensing and Diagnostic Uses," in Adaptive Optics for Vision Science, John Wiley & Sons, Inc., 2006.
    [8] N. Lindlein, J. Pfund, "Experimental results for expanding the dynamic range of a shack-hartmann sensor using astigmatic microlenses," Optical Engineering, vol. 41, no. 2, pp. 529 - 533, 2002.
    [9] G. Yoon, S. Pantanelli, L. J. Nagy, "Large-dynamic-range shack-hartmann wavefront sensor for highly aberrated eyes," Journal of Biomedical Optics, vol. 11, no. 3, p. 030502, 2006.
    [10] D. G. Smith, J. E. Greivenkamp, "Generalized method for sorting Shack–Hartmann spot patterns using local similarity," Applied Optics, vol. 47, no. 25, pp. 4548 - 4554, 2008.

    [11] C. Leroux and C. Dainty, "A simple and robust method to extend the dynamic range of an aberrometer," Optics Express, vol. 17, no. 21, pp. 19055 - 19061, 2009.
    [12] S. Groening, B. Sick, K. Donner, J. Pfund, and N. Lindlein, "Wave-front reconstruction with a Shack–Hartmann sensor with an iterative spline fitting method," Applied Optics, vol. 39, no. 4, pp. 561 - 567, 2000.
    [13] L. Lundstrom, and P. Unsbo, "Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method," Optometry and Vision Science, vol. 81, no. 5, pp. 383 - 388, 2004.
    [14] L. Ying, "Phase Unwrapping," in Wiley Encyclopedia of Biomedical Engineering, John Wiley & Sons, Inc, 2006.
    [15] H. Zhong, J. Tang, S. Zhang, and M. Chen, "An Improved Quality-Guided Phase-Unwrapping Algorithm Based on Priority Queue," IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 2, pp. 364 - 368, 2011.
    [16] H. Zhong, S. Zhang, and J. Tang, "Path Following Algorithm for Phase Unwrapping Based on Priority Queue and Quantized Quality Map," in Computational Intelligence and Software Engineering, Wuhan, 2009.
    [17] X. Su, W. Chen, "Reliability-guided phase unwrapping algorithm: a review," Optics and Lasers in Engineering, vol. 42, pp. 245 - 261, 2003.
    [18] P. Bedggood, A. Metha, "Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry," Journal of Biomedical Optics, vol. 15, no. 6, p. 067004, 2010.
    [19] H. J. Noordmans, and A. W. M. Smeulders, "Detection and Characterization of Isolated and Overlapping Spots," Computer Vision and Image Understanding, vol. 70, no. 1, pp. 23 - 35, 1998.

    QR CODE
    :::