| 研究生: |
張竣凱 Chun-Kai Chang |
|---|---|
| 論文名稱: |
磁鏡波的太空觀測與粒子模擬研究 Hybrid particle simulations of the observed mirror waves in space environments |
| 指導教授: |
郝玲妮
Lin-Ni Hau |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 太空電漿物理 、磁流體力學 、磁鏡不穩定性 、磁層物理 、數值模擬 |
| 外文關鍵詞: | Space plasma physics, MHD, Mirror instability, Megnetospheric physics, Numerical simulation |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁鏡不穩定性發生於電漿溫度非均向之環境中,其發生條件為:T_perp/T_para>1 且 β_perp/β_para>(1+β_perp)/β_para;此關係式中的T_perp與T_para分別表示垂直與平行於磁場的溫度,而電漿的beta為:β_perp,para=p_perp,para/(B^2/2μ_0)。磁鏡不穩定所產生的磁鏡波的現象已廣泛地被觀測到,如在太陽風、地球磁鞘、行星磁鞘與日鞘等區域中均有觀測的案例。磁鏡波的結構具有磁場的增加或減少,伴隨著電漿密度的減少或增加的特性;即兩者間具有反相位的關係。同樣的反相位關係亦可在溫度與磁場之間觀察到。研究顯示,線性的混合kinetic-MHD理論可以定量地解釋發生於地球磁鞘的磁鏡波之相位特性與熱力狀態。本論文研究之主要目的為,利用微觀動力數值模式驗證線性理論及觀測結果,並探討磁鏡不穩定性之非線性的演化過程。我們選擇了20組的β_perp與β_para參數值,作為混合粒子數值模式的初始條件,探討磁鏡不穩定性隨時間的演化,並比較粒子模式結果、線性Vlasov理論、以及6個磁鏡波的觀測案例,包含其成長率、相位關係、熱力狀態等。研究結果顯示,三者之間具有高度的一致性。我們比較雙重多向性能量定律與粒子模擬結果,得出γ_perp = 0.64±0.21與γ_para = 1.07±0.12 ,與線性理論預測及觀測所得到的 γ_perp<1與 γ_para≳1結果吻合。其中,非線性模擬結果可重建觀測個案,包括磁場等物理擾動量以及磁鏡波的波長等。統計的分析結果顯示,在模擬達飽和階段時,溫度非均向β_perp/β_para與β_para會呈現反相關,且滿足新的磁鏡不穩定性條件γ_para*β_para=β_perp^2/(2+γ_perp*β_perp),其中γ_perp≈0.8,γ_para≈1.3。
Mirror instability may occur in anisotropic plasmas for the condition of T_perp/T_para>1 and β_perp/β_para>(1+β_perp)/β_para, where β_perp,para=p_perp,para/(B^2/2μ_0), T_perp and T_para are the two temperatures, perpendicular and along the magneic field, respectively. The mirror waves associated with the mirror instability have been widely observed in the solar wind, terrestrial magnetosheath, planetary magnetosheaths and heliosheath, etc. The important characteristic of the observed mirror wave structures is that the magneitic field is increased or decreased with the decreasing or increasing plasma density, or, there exists an anticorelation between these two quantities. In addition, the anticorrelation between the perpendicular temperature and magnetic field has also been observed. The present study first shows that the linear mixed kinetic-MHD theory can quantitatively describe the phase relations and thermodynamic conditions of the observed mirror waves in the terrestrial magnetosheath. Furthermore, it is shown that the theoretical predictions and mirror observations may be verified by the kinetic simulations of the time evolutions of proton mirror instability. We examine the proton mirror instability based on the hybrid particle simulations for twenty sets of initial β_perp and β_para values and the quantitative comparisons are made between the kinetic simulations, linear theory and mirror observations in terms of the growth rates, phase relations and thermodynamic conditions, etc. The results show that the simulations and observations are in high agreements with the theoreitcal predictions. In particular, the polyropic exponents in the saturated states of the kinetic simulations are in the ranges of γ_perp = 0.64±0.21 and γ_para = 1.07±0.12, which are consistent with theoretical predictions and mirror observations of γ_perp<1 and γ_para≳1. It is shown that the observed features, including various perturbations and wavelengths etc., may be reproduced by the nonlinear simulations. The analyses of statistical results indicate that the saturated temperature anisotropy β_perp/β_para and plasma β_para are anticorrelated and the relation may be fitted by the modified mirror instability threshold of γ_para*β_para=β_perp^2/(2+γ_perp*β_perp) with γ_perp≈0.8 and γ_para≈1.3.
Auster, H. U., K. H. Glassmeier, W. Magnes, et al. The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235, 2008.
Bale, S. D., J. C. Kasper, G. G. Howes, E. Quataert, C. Salem, and D. Sundkvist, Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind, Phys. Rev. Lett., 103, 211101, doi: 10.1103/PhysRevLett.103.211101, 2009.
Balikhin, M. A., R. Z. Sagdeev, S. N. Walker, O. A. Pokhotelov, D. G. Sibeck, N. Beloff, and G. Dudnikova, THEMIS observations of mirror structures: Magnetic holes and instability threshold, Geophys. Res. Lett., 36, L03105, doi:10.1029/2008GL036923, 2009.
Burlaga, L. F., N. F. Ness, and M. H. Acuna, Linear magnetic holes in a unipolar region of the heliosheath observed by Voyager 1, J. Geophys. Res., 112, A07106, doi:10.1029/2007JA012292, 2007.
Califano, F., P. Hellinger, E. Kuznetsov, T. Passot, P. L. Sulem, and P. M. Trávníček, Nonlinear mirror mode dynamics: Simulations and modeling, J. Geophys. Res., 113, A08219, doi:10.1029/2007JA012898, 2008.
Chandrasekhar, S., A. N. Kaufman, and K. M. Watson, The stability of the pinch, Proc. R. Soc. Lond. S. A, 245(1243), 435-455, 1958.
Chang, C.-K., and L.-N. Hau, Kinetic simulations of proton mirror instability: Phase relations and thermodynamics, Astrophys. J., 941, 9, 2022.
Chew, G. F., M. L. Goldberger, and F. E. Low, The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions, Proc. Roy. Soc. London, Ser A, 236, 112, 1956.
Erdös, G., and A. Balogh, Statistical properties of mirror mode structures observed by Ulysses in the magnetosheath of Jupiter, J. Geophys. Res., 101(A1), 1-12, 1996.
Ferrière, K. M., and N. André, A mixed magnetohydrodynamic-kinetic theory of low-frequency waves and instabilities in homogeneous, gyrotropic plasmas, J. Geophys. Res., 107, 1349, doi:10.1029/2002JA009273, 2002.
Hasegawa, A., Drift mirror instability in the magnetosphere, Phys. Fluids, 12, 12, 1969.
Hasegawa, A., Plasma Instabilities and Nonlinear Effects, p. 94, Springer-Verlag, New York, 1975.
Hau, L.-N., and B. U. Ö. Sonnerup, On slow mode waves in anisotropic plasmas, Geophys. Res. Lett., 20, 1763-1766, 1993.
Hau, L.-N., T.-D. Phan, B. U. Ö. Sonnerup, and G. Paschmann, Double-polytropic closure in the magnetosheath, Geophys. Res. Lett., 20, 2255-2258, 1993.
Hau, L.-N., and B. U. Ö. Sonnerup, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data, J. Geophys. Res., 104(A4), 6899-6917, 1999.
Hau, L.-N., and B.-J. Wang, On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas, Nonlin. Processes Geophys., 14, 557–568, 2007.
Hau, L.-N., and C.-K. Chang, Plasma dependence of density, temperatures, and magnetic-field correlations of mirror structures: Observation and theory, Astrophys. J., 894, 113, 2020.
Hau, L.-N., C.-K. Chang, and G.-W. Chen, mirror-wave structures in the solar wind: Grad–Shafranov reconstruction, MHD, and Hall MHD simulations with double-polytropic energy closures, Astrophys. J., 900, 97, 2020.
Hau, L.-N., C.-K. Chang, and B.-J. Wang, Do There Exist Energy Closures to the Observed Mirror Waves? Geophys. Res. Lett., 48, e2021GL095483, 2021.
Hellinger, P., P. Trávníček, J. C. Kasper, and A. J. Lazarus, Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations, Geophys. Res. Lett., 33, L09101, doi:10.1029/2006GL025925, 2006.
Hellinger, P., Comment on the linear mirror instability near the threshold, Phys. Plasma, 14, 082105, 2007.
Horbury, T. S., E. A. Lucek, and A. Balogh, Motion and orientation of magnetic field dips and peaks in the terrestrial magnetosheath, J. Geophys. Res., 109, A09209, doi:10.1029/2003JA010237, 2004
Horbury, T. S., and E. A. Lucek, Size, shape, and orientation of magnetosheath mirror mode structures, J. Geophys. Res., 114, A05217, doi:10.1029/2009JA014068, 2009.
Kasper, J.C., A. J. Lazarus, and S. P. Gary, Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy, Geophys. Res. Lett., 29(17), 1839, doi:10.1029/2002GL015128, 2002.
Khrabrov, A. V., and B. U. Ö Sonnerup, DeHoffmann-Teller analysis, in Analysis Methods for Multi-Spacecraft Data, ISSI Sci. Rep. SR-001, edited by G. Paschmann and P. W. Daly. p. 221-248, Springer, New York, 1998.
Matthew, A. P., Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations, J. Comput. Phys., 112, 102-116, 1994.
McFadden, J. P., C. W. Carlson, D. Larson, et al. The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., 141, 277, 2008.
Mousavi, A., K. Liu, and K. Min, Mirror instability driven by pickup ions in the outer heliosheath, Astrophys. J., 901, 167, 2020.
Passot, T., and P. L. Sulem, A fluid model with finite Larmor radius effects for mirror mode dynamics, J. Geophys. Res., 111, A04203, doi:10.1029/2005JA011425, 2006.
Pokhotelov, O. A., M. A. Balikhin, H. St-C.K. Alleyne, and O. G. Onishchenko, Mirror instability with finite electron temperature effects, J. Geophys. Res., 105(A2), 2393-2401, 2000.
Pokhotelov, O. A., R. A. Treumann, R. Z. Sagdeev, M. A. Balikhin, O. G. Onishchenko, V. P. Pavlenko, and I. Sandberg, Linear theory of the mirror instability in non-Maxwellian space plasmas, J. Geophys. Res., 107(A10), 1312, doi:10.1029/2001JA009125, 2002.
Pollock, C., T. Moore, A. Jacques, et al. Fast plasma investigation for Magnetospheric Multiscale, Space Sci. Rev., 199, 331, 2016.
Pokhotelov, O. A., R. Z. Sagdeev, M. A. Balikhin, and R. A. Treumann, Mirror instability at finite ion-Larmor radius wavelengths, J. Geophys. Res., 109, A09213, doi:10.1029/2004JA010568, 2004.
Qu, H., Z. Lin, and L. Chen, Geophys. Res. Lett., 35, L10108, doi:10.1029/2008GL033907, 2008.
Russell, C. T., B. J. Anderson, W. Baumjohann, et al. The Magnetospheric Multiscale magnetometers, Space Sci. Rev., 199, 189, 2016.
Samsonov, A. A., O. Alexandrova, C. Lacombe, M. Maksimovic, and S. P. Gary, Proton temperature anisotropy in the magnetosheath: comparison of 3-D MHD modelling with Cluster data, Ann. Geophys., 25, 1157-1173, 2007.
Shoji, M., Y. Omura, B. T. Tsurutani, O. P. Verkhoglyadova, and B. Lembege, Mirror instability and L-mode electromagnetic ion cyclotron instability: Competition in the Earth’s magnetosheath, J. Geophys. Res., 114, A10203, doi:10.1029/2008JA014038, 2009.
Shoji, M., Y. Omura, and L.-C. Lee, Multidimensional nonlinear mirror-mode structures in the Earth’s magnetosheath, J. Geophys. Res., 117, A08208, doi:10.1029/2011JA017420, 2012.
Sonnerup, B. U. Ö, and L. J. Cahill, Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72, 171, 1967.
Soucek, J., E. Lucek, and I. Dandouras, J. Geophys. Res., 113, A04203, doi:10.1029/2007JA012649, 2008.
Teh, W.-L., and S. Zenitani, Thermodynamic properties of mirror structures in the magnetosheath: MMS observations and double-polytropic MHD Simulations, Astrophys. J., 885, 22, 2019.
Tsurutani, B. T., E. J. Smith, R. R. Anderson, K. W. Ogilvie, J. D. Scudder, D. N. Baker, and S. J. Bame, Lion roars and nonoscillatory drift mirror waves in the magnetosheath, J. Geophys. Res., 87(A8), 6060-6072, 1982.
Tsurutani, B. T., G. S. Lakhina, O. P. Verkhoglyadova, E. Echer, F. L. Guarnieri, Y. Narita, and D. O. Constantinescu, Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: Differences and distinguishing features, J. Geophys. Res., 116, A02103, doi:10.1029/2010JA015913, 2011.
Vedenov, A. A., and R. Z. Sagdeev, Some properties of a plasma with an anisotropic ion velocity distribution in a magnetic field, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, III, p. 332, Pergamon, New York, 1958.
Violante, L., M. B. Bavassano Cattaneo, G. Moreno, and J. D. Richardson, Observations of mirror waves and plasma depletion layer upstream of Saturn’s magnetopause, J. Geophys. Res., 100(A7), 12047-12055, 1995.
Yoon, P. H., and J. Seough, Quasilinear theory of anisotropy-beta relation for combined mirror and proton cyclotron instabilities, J. Geophys. Res., 117, A08102, doi:10.1029/2012JA017697, 2012.
Zhang, L., J. He, J. Zhao, S. Yao, and X. Feng, Nature of magnetic holes above ion scales: A mixture of stable slow magnetosonic and unstable mirror modes in a double-polytropic scenario? Astrophys. J., 864, 35, 2018.
蘇韶晴,救火管不穩定性之混合粒子碼模擬研究,碩士論文,國立中央大學太空科學研究所,2007。