| 研究生: |
李奉樵 Feng-Chiao Lee |
|---|---|
| 論文名稱: | Identification of Spherical Mechanism Parameter Errors using a Genetic Algorithm |
| 指導教授: |
伊泰龍
Térence Essomba 吳育仁 Yu-Ren Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 遠端運動中心 、誤差模型 、正向運動學 、遺傳演算法 |
| 外文關鍵詞: | Remote Center of Motion, Error Model, Forward Kinematic Model, Genetic Algorithm |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
手術機器人在近年成為外科手術的常見設備,用以協助外科醫師進行微創手術。在使用手術機器人時,需進行高精度之定位及手術。手術機器人的機構及運動特徵決定手術機器人之作動。
手術機器人設計常應用遠端運動中心 (Remote Center of Motion) 之機構。遠端運動中心為一理論可使機構繞一虛擬點旋轉及運動。而遠端運動中心之精準度取決於機構的裝配及工件之加工精度。本文應用誤差分析原理模擬具誤差之機構運動模型。誤差運動模型可表述具誤差時之正向運動狀態。
在誤差分析中,關節之裝配及加工誤差會實質影響關節旋轉軸之方向。關節旋轉軸之方向會影響遠端運動中心之位置。預測具誤差之未知關節旋轉軸為本文重點研究方向。為能預測未知關節旋轉軸之方向,本文建立一創新旋轉軸誤差演算法( Error Identification Algorithm),此新式演算法應用遺傳演算法之原理求解建立機構運動模型之參數。並以此參數求解出具誤差之遠端運動中心。本文將此創新演算法應用於不同案例並與Solidwork模型進行驗證,確認此種演算法之求解能力及適應性。
Recently, medical robots have become common devices to assist doctors doing the minimally invasive surgery (MIS). Medical robots can do the surgery with high precision. The architecture and kinematic decide the movement of the medical robot.
Medical robots often rely on remote center of motion in their kinematics. Remote center of motion is a concept where the mechanism will move its end effector around a virtual point. Precision of remote center of motion depends on the assembly and manufacturing precision of the mechanism. This thesis applies the error analysis method to remote center of motion mechanisms made of spherical linkages. The error model obtained from a specific forward kinematic definition that includes these errors.
During the error analysis, the assembly and manufacturing of a joint will affect the joint rotation axes. The joint rotation axis will affect the end effector position of the mechanism. The estimation of the unknown joint rotation axes will be considered as a main problem of this research. An algorithm named Error Identification Algorithm (EIA) has been generated in this regards. The EIA applies the concept of genetic algorithm and figure out the unknown parameters which can generate the error model. The rotation axes will be solved by the parameters and the end effector position that is affected by the error sources will be calculated by EIA.
EIA can be applied in different cases including the simple linkages case and the complex multiple linkages case. The result of EIA will valid with Solidworks model to ensure the solving ability of EIA.
[1] R. H. Taylor, “A remote center of motion robotic arm for computer assisted surgery”, Robotica, Vol 14, pp.103-109, 1996
[2] Y. S. Kwoh, J. Hou, A. Edmond,” A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery”, IEEE Transactions on Biomedical Engineering , 35(2), 1988
[3] R. H. Taylor, 1995, Remote center of motion robot for surgery. U.S.Patent No.5397323
[4] S. Aksungur, O. Yakut,” Fuzzy Control of Laparoscopic Surgical Robot Designed for Use in Minimally Invasive Surgery”, IJAMEC, 6(4), pp.65-70, 2018
[5] G. S. Guthart, J. Kenneth Salisbury, Jr., “The Intuitive Tele surgery System: Overview and Application”, IEEE ICRA, February 2000
A. Faraz, S. Payandeh, “A robotic case study: optimal design for laparoscopic positioning stands”, The International Journal of Robitcs Research, 17(9), 986-995, 1998
[6] M. Zoppi, D. Zlatanov, Clement M. Gosselin, “Analytical kinematics model and special geometries of a class of 4-DoF parallel Mechanisms”, IEEE Transactions on Robotics, 21(6), December 2008
[7] M. Ghodoussi, S.E. Butner, Y. Wang, 2002, “Robotic Surgery - The Transatlantic Case,” Proceedings of IEEE International Conference on Robotics and Automation, 2, pp. 1882–1888, Washington DC, USA.
[8] D. Sanchez, M. Black, S. Hammond, 2002, “A Pivot Point Arm for a Robotic System used to perform a Surgical Procedure,” European Patent No. 1254642.
[9] D. Kim, E. Kobayashi, T. Dohi, I. Sakuma, 2002, “A new compact MR-compatible surgical manipulator for minimally invasive liver surgery,” International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI, Vol. 2488. Springer, pp. 99-106, Berlin, Heidelberg.
[10] S.J Harris., F. Arambula-Cosio, Q. Mei, R.D. Hibberd, B.L. Davies, J.E.A. Wickham, M.S. Nathan, B. Kundu, 1997, “The Probot—an active robot for prostate resection,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 211(4), pp. 317-325.
[11] K. Masamune, E. Kobayashi, Y. Masutani, M. Suzuki, T. Dohi, H Iseki, K. Takakura, 1995, “Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” Journal of Image Guided Surgery, 1(4), pp. 242-248.
[12] G. Zong, V. Pei, J. Yu, S. Bi, 2008, “Classification and Type Synthesis of 1-DoF Remote Center of Motion Mechanisms,” Mechanism and Machine Theory, 43(12), pp. 1585-1595.
[13] R.H. Taylor, J. Funda, D. Larose, M. Treat, 1992, “A telerobotic system for augmentation of endoscopic surgery,” Proceedings of IEEE Engineering in Medicine and Biology Society, 3, pp. 1054–1056, Paris, France.
[14] S.E. Salcudean, W.H. Zhu, P. Abolmaesumi, S. Bachmann, P.D. Lawrence, 2000, “A robot system for medical ultrasound,” Robotics Research – International Symposium, 9, pp.195-202.
[15] Rosen. J. Brown, J.D. Chang, L. Barreca, M. Sinanan, M. Hannaford, 2002, “The BlueDRAGON - A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proceedings of IEEE International Conference on Robotics and Automation, 2, pp. 1876-1881, Washington DC, USA.
[16] S. Karim, S. Piano, R. Leach, M. Tolley, “Error modelling and validation of a high precision five degree of freedom hybrid mechanism for high-power high- repetition rate laser operations”, Journal of the International Societies for Precision Engineering and Nanotechnology, 54, pp182-197, 2018
[17] P. D. Lin, J. F. Chen, “Analysis of errors in precision for closed loop mechanisms”, Journal of Mechanical Design, Vol.116, p.197-203, March 1994
[18] S. Karim, S. Piano, R. Leach, M. Tolley, “Error modelling and validation of a high precision five degree of freedom hybrid mechanism for high-power high- repetition rate laser operations”, Journal of the International Societies for Precision Engineering and Nanotechnology, 54, p.182-197, 2018
[19] P. D. Lin, J. F. Chen, “Analysis of errors in precision for closed loop mechanisms”, Journal of Mechanical Design, Vol.116, p.197-203, March 1994
[20] H. S. Kim, Y. J. Choi, “The kinematic error bound analysis of the stewart platform”, Journal of Robotic Systems, 17(1), 63-73, 2000
[21] Z. Meng, R.S.Che, Q.C.Huang, Z.J. Yu, “The direct-error-compensation method of measuring the error of a six-freedom-degree parallel mechanism CMM”, Journal of Materials Processing Technology, 129, 574-578, 2002
[22] L. J. Everett, “Models for diagnosing robot error sources”, Proceedings of IEEE International Conference on Robotics and Automation, Vol.2, pp 155-159, May 1993
[23] J. Nordquist, M. L. Hull, “Design and Demonstration of a New Instrumented Spatial of a New Instrumented Spatial Linkage for Use in a Dynamic Environment: Application to Measurement of Ankle Rotations During Snowboarding”, Journal of Biomechanical Engineering, Vol. 129, pp. 231-238, April 2007
[24] P. V. Pashaki, M. Pouya, “Volumetric error compensation in five-axis CNC Machining center through kinematics modeling of geometric error”, Advances in Science and Technology Research Journal, Vol.10(30), pp. 207-217, June 2016
[25] M.A. Laribi, A. Mlika, L. Romdhane, S. Zeghloul, “A combined genetic algorithm- fuzzy logic method (GA-FL) in mechanism synthesis”, Mechanism and Machine Theory, 39, 717-735, 2004
[26] J.A. Cabrera, A. Simon, M. Prado, “Optimal synthesis of mechanisms with genetic algorithms”, Mechanism and Machine theory, 37, 1165-1177, 2002
[27] J. Holland. Adaptation in Natural and Artificial Systems (1975)
[28] Essomba, T., Laribi, M.A., Zeghloul, S.Poisson,G., “Optimal synthesis of a spherical parallel mechanism for medical application”, Robotica, Vol.34(3), pp. 671-688, 2016
[29] G. Zhou, X. Chu, “Propagation of super-Lorentzian beams through a paraxial ABCD optical system”, Opitcs& Laser Technology, Vol.42, pp.1093-1098, 2010
[30] A. Mendivil, R. W. Holloway, J. F. Boggess, “Emergence of robotic assisted surgery in gynecologic oncology: American perspective”, Gynecologic Oncology, 114, s24-s31, 2009