| 研究生: |
何金燦 Chin-Tsan HO |
|---|---|
| 論文名稱: |
複循環機組加氫之性能模擬分析與成本效益評估(以大潭發電廠#1複循環發電機組為例) Performance Simulation and Cost-Benefit Analysis of the Hydrogen Addition Effects on the Combined-Cycle Unit (Based on the Dah-Tarn Power Plant) |
| 指導教授: |
施聖洋
Shenq-yang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 當量比 、絕熱火燄溫度 、氣渦輪機進口溫度 、機組熱效率 |
| 外文關鍵詞: | hydrogen-blended natural gas, thermochemical model for combined cycle simulati, thermal efficiency, CO2 reduction, cost-benefit analysis |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用台電大潭複循環發電機組之熱平衡圖運轉條件,建立複循環機組加氫之熱力化學模擬模式,以此模式來模擬分析甲烷燃料加氫效應對複循環機組熱效率及CO2排放之影響,並評估加氫之成本效益。當甲烷加氫比率逐漸增加時,絕熱火燄溫度隨當量比(equivalence ratio,φ)變化之分佈曲線會往貧油遞減方向移動。由於絕熱火燄溫度決定氣渦輪機進口溫度,而氣渦輪機進口溫度越高,機組熱效率越高。因此以甲烷加氫當複循環機組之燃料,有助於在貧油條件下較低φ值時(φ < 1),提供較高之火燄溫度,利於提升機組熱效率。以φ = 0.3加氫比率為10%為例,機組熱效率提升幅度可達21%,而機組CO2排放量減少幅度可達20.8%。相較於96年度國內電力設施CO2排放量平均值0.637kg/kW•hr,當複循環機組加氫比率達50%時,其CO2排放量為0.195kg/kW•hr,僅國內電力設施CO2排放量平均值之30.6%,可有效減少溫室氣體排放。以未加氫的複循環機組之燃料成本為基準,與加氫比率為10%的機組作比較,若納入CO2及NOx減量效益,以及我國(2010年)再生能源生產氫氣預估成本0.532 USD/m3,加氫燃料之成本淨效益為0.135 NTD/kW•hr,淨效益大於零具有投資價值。
This thesis attemps to establish a thermochemical model for the combined-cycle unit simulation based on the operation conditions of heat balance diagrams from the Taipower Dah-Tarn power plant. We use this model to analyze the effects of hydrogen-blended natural gases to the thermal efficiency of the combined-cycle unit, to the reduction of CO2 emission, and to the corresponding cost-benefit estimation. Since the peak value of adiabatic flame temperatures of hydrogen-blended natural gases can be shifted toward the leaner side of their equivalence ratios (φ) when the mole fraction of H2 to natural gas of such fuel increases, this can result in a higher turbine inlet temperature and thus a higher thermal efficiency. Therefore, the usage of H2 addition is useful for lean methane combustion (φ < 1). For instance, the thermal efficiency of the combined-cycle unit has a 21% increment with a 20.8% CO2 emission reduction, when the natural gas fuel at φ = 0.3 is blended with 10% H2. Compared to 2007 mean annual CO2 emissions of domestic power plants which are about 0.637 kg/(kW•hr), if 50% H2 is blended into the natural gas fuel, the mean CO2 emission can be reduced to 0.195 kg/(kW•hr) which is only 1/3 of the 2007 annual mean. Consequently, adding hydrogen can have an important advantage of reducing greenhouse gas emissions. The estimated cost of H2 produced from some renewable energy sources is aboutf 0.532 USD/m3 in the 2010 fiscal year for Taiwan. Taking an example of a combined-cycle unit using methane dopping with 10% H2 as a fuel, the net benefit per unit of electricity generation is 0.135 NTD/kW•hr with the consideration of CO2 and NOx reductions. Thus, the net benefit of using hydrogen additions is promising and deserves to invest in the near future.
參考文獻
[1]經濟部能源局網站,http://www.moeaboe.gov.tw,2008年7月7日。
[2]經濟部能源局,“擴大國內天然氣使用方案”,2006年12月。
[3]Shy, S. S., Chen, Y. C., Yang, C. H., Liu, C. C. and Huang, C.M., “Effects of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion,” Combust. Flame 153,510-524(2008).
[4]Schefer, R. W., Wicksall, D. M. and Agrawal, A. K., “Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner,” Proc. Combust. Inst.29,843-851(2002).
[5]Wicksall, D. M., Agrawal, A. K., Schefer, R. W. and Keller, J. O., “The interaction of flame and flow field in a Lean Premixed Swirl-Stabilized Combustor operated on H2/CH4/air,” Proc. Combust. Inst.30,2875-2883(2005).
[6]Strohle, J. and Myhrvold, T., “An evaluation of detailed reaction mechanisms for hydrogen combustion under gas turbine conditions,” Int. J. Hydrog. Energy 32,125-135(2007).
[7]Wright, I. G. and Gibbons, T. B., “Recent developments in gas turbine materials and technology and their implications for syngas firing,” Int. J. Hydrog. Energy 32,3610-3621(2007).
[8]Bockris, J. O., “Hydrogen no longer a high cost solution to global warming: new ideas,” Int. J. Hydrog. Energy 33,2129-2131(2008).
[9]Lee, D. H. and Lee, D. J., “Hydrogen economy in Taiwan and biohydrogen,” Int. J. Hydrog. Energy 33,1607-1618(2008).
[10]Shoko, E., Mclellan, B., Dicks, A. L. and Diniz, J. C., “Hydrogen from coal: production and utilization technologies,” Int. J. Coal Geology 65,213-222(2006).
[11]TerMaath, C. Y., Skolnik, E. G., Schefer, R. W. and Keller, J. O., “Emissions reduction benefits from hydrogen addition to midsize gas turbine feedstocks,” Int. J. Hydrog. Energy 31,1147-1158(2006).
[12]蔡妙珊,“永續發展電力部門社會成本評估”,碳經濟 第八期,pp24-28,2008年2月。
[13]梁啟源,“能源稅及其配套對台灣經濟之影響”,石油市場雙週報,pp.4-9,2007年10月。
[14]呂岱芬,“初探CO2碳權交易制度與集保機構登錄交割平台機制”,集保結算所月刊,168期,pp.23-33,2007年11月15日。
[15]歐州氣候交易所(ECX)網站,http://www.ecx.eu/default_flash.asp,2008年7月7日。
[16]CNS14765,“氣體燃料熱值與壓縮因子及相對密度計算法”,2003年9月9日公布。
[17]黃勝良,“SATP氣體參數對複循環電廠之性能最佳化實證與分析研究”,中山大學機械工程研究所,碩士論文,2004年。
[18]張四明,“成本效益分析在政府決策上的應用與限制”,行政暨政策學報,第三期,pp.45-80,2001年8月。
[19]臺灣電力公司,“97年度第1期電廠熱循環效率分析班”,訓練教材,2008年4月。
[20]MHI,“Dah-Tarn Combined Cycle power project specification of Performance Calculation Unit”,2005年10月27日。