跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉亞綸
Ya-Lun Liu
論文名稱: 低電流密度下極化效應對微型LED內部量子效率影響之研究
指導教授: 韋安琪
An-Chi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 半極性晶向發光二極體內部量子效率微發光二極體單量子井低電流密度
外文關鍵詞: semi-polar orientation, LEDs, internal quantum efficiency, micro-LEDs, single quantum well, low current density
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討半極性晶向之單量子井(single quantum well, SQW) 藍光微發光二極體(µ-LED)於低電流密度下之光電特性。藉由模擬分析,探討8種晶向與不同QW厚度對內部量子效率(internal quantum efficiency, IQE)與正向電壓之影響。模擬結果發現pn-接面之內建電場與反向極化導致之電場在低電流密度下對IQE與正向電壓有顯著的影響。由能帶圖的分析顯示非極性發光二極體因內建電場導致的能帶傾斜而並非擁有最高的IQE與最大允許厚度。另外,反向極化會增加與內建電場同向之能帶傾斜,故較於接近非極性之(11-22)微發光二極體於較大QW厚度有較差的IQE。但反向極化也會減少電洞能障高度,故可在同電流密度下有更低的正向電壓。最後發現低電流密度下,於本文討論之8種晶向中,弱正向極化(10-12)微發光二極體有最高IQE與最大允許厚度,這源於弱正向極化之電場與內建電場間的平衡,使其擁有最平整的能帶。


    This study investigates the optoelectronic properties of blue micro-light-emitting diodes (µ-LED) based on the semipolar single quantum well (SQW) at low current density. Through simulation analysis, the influences of eight crystal orientations and different QW thicknesses on internal quantum efficiency (IQE) and forward voltage are investigated. The simulation results show that, at low current density, the built-in electric field of the p–n junction and the electric field caused by reversed polarization have a significant effect on the IQE and forward voltage. Analysis of the energy band diagram shows that non-polar LEDs do not exhibit the highest IQE and maximum allowed thickness, owing to the energy band tilt caused by the built-in electric field. Additionally, reversed polarization increases band tilt in the same direction as the built-in electric field, resulting in poorer IQE compared to non-polar LEDs. However, reversed polarization also reduces hole barrier height, resulting in lower forward voltage at the same current density. Finally, it is found that weakly positive-polarized (10-12) LEDs have the highest IQE and maximum allowed thickness at low current density, which is due to the flat energy band with reduced band tilt caused by weakly positive polarization.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 viii 表目錄 ix 第一章、緒論 1 2-1 研究背景 1 2-2 研究動機 2 2-2-1 纖鋅礦結構GaN之極化效應 2 2-2-2 微發光二極體(Micro-LED, μ-LED)於顯示器應用之工作條件 6 2-3 研究目的 7 2-4 論文架構 7 第二章、基礎理論與原理 9 3-1 帕松方程與載子傳輸 9 3-2 載子之產生與復合模型 10 3-2-1 蕭特基-瑞德-霍爾復合 11 3-2-2 歐傑復合 11 3-2-3 自發輻射 12 3-2-4 內部量子效率 14 3-3 極化計算 14 第三章、模擬設計與架構 20 4-1 模擬設計 20 4-2 SQW μ-LED結構之設計 21 4-3 SQW μ-LED材料參數之設定 22 4-3-1 能隙(Band gap) 23 4-3-2 有效能態密度(Effective density of states)函數之計算 23 4-3-3 能帶偏移計算 25 4-3-4 載子遷移率 26 4-3-5 相對介電常數 28 4-4 SQW μ-LED半導體物理之設定 29 4-4-1 載子復合 29 4-4-2 極化 29 第四章、模擬結果與討論 31 5-1 總極化之計算與文獻比較 31 5-2 半極性微發光二極體之電流-電壓特性 33 5-3 極性、半極性、非極性、反向極性之能帶圖 34 5-4 不同半極性晶向與厚度之比較 35 第五章、結論與未來展望 45 6-1 結論 45 6-2 未來展望 46 參考文獻 48 附錄 56

    [1] H. D. Jabbar, M. A. Fakhri, and M. J. AbdulRazzaq, "Gallium nitride–based photodiode: a review," Materials Today: Proceedings, vol. 42, pp. 2829-2834, 2021.
    [2] J. Wu, "When group-III nitrides go infrared: New properties and perspectives," Journal of applied physics, vol. 106, no. 1, p. 5, 2009, doi: https://doi.org/10.1063/1.3155798.
    [3] J. Verma, A. Verma, V. Protasenko et al., "Nitride LEDs based on quantum wells and quantum dots," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2014, ch. 11, pp. 368-408.
    [4] J. D. Simon, "Polarization-engineered III-V nitride heterostructure devices by molecular beam epitaxy," University of Notre Dame, 2009.
    [5] Y.-R. Wu, C.-Y. Huang, Y. Zhao et al., "Nonpolar and semipolar LEDs," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2018, ch. 8, pp. 273-295.
    [6] J.-H. Ryou and W. Lee, "GaN on sapphire substrates for visible light-emitting diodes," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2018, ch. 3, pp. 43-78.
    [7] Y. Zhao, H. Fu, G. T. Wang et al., "Toward ultimate efficiency: Progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes," Advances in Optics and Photonics, vol. 10, no. 1, pp. 246-308, 2018, doi: https://doi.org/10.1364/AOP.10.000246.
    [8] H. Fu and Y. Zhao, "Efficiency droop in GaInN/GaN LEDs," in Nitride semiconductor light-emitting diodes (LEDs), J.-J. Huang, H.-C. Kuo, and S.-C. Shen Eds.: Elsevier, 2018, ch. 9, pp. 299-325.
    [9] S. Jin, J. Li, J. Li et al., "GaN microdisk light emitting diodes," Applied Physics Letters, vol. 76, no. 5, pp. 631-633, 2000.
    [10] H. Jiang, S. Jin, J. Li et al., "III-nitride blue microdisplays," Applied Physics Letters, vol. 78, no. 9, pp. 1303-1305, 2001.
    [11] S. Lu, J. Li, K. Huang et al., "Designs of InGaN micro-LED structure for improving quantum efficiency at low current density," Nanoscale Research Letters, vol. 16, no. 1, p. 99, 2021, doi: https://doi.org/10.1186/s11671-021-03557-4.
    [12] T. Wu, C.-W. Sher, Y. Lin et al., "Mini-LED and micro-LED: promising candidates for the next generation display technology," Applied Sciences, vol. 8, no. 9, p. 1557, 2018.
    [13] J. Piprek, "How to decide between competing efficiency droop models for GaN-based light-emitting diodes," Applied Physics Letters, vol. 107, no. 3, p. 031101, 2015.
    [14] X. Jia, Y. Zhou, B. Liu et al., "A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications," Materials Research Express, vol. 6, no. 10, p. 105915, 2019, doi: https://doi.org/10.1088/2053-1591/ab3f7b.
    [15] D. L. Becerra, Y. Zhao, S. H. Oh et al., "High-power low-droop violet semipolar (30-3-1) InGaN/GaN light-emitting diodes with thick active layer design," Applied Physics Letters, vol. 105, no. 17, p. 171106, 2014, doi: https://doi.org/10.1063/1.4900793.
    [16] webpage from: COMSOL https://doc.comsol.com/6.1/docserver/#!REF:%252Fcom.comsol.help.semicond%252Ftoc.xml:RES:res_toc_-595578872.html
    [17] J. Piprek, "Efficiency models for GaN-based light-emitting diodes: Status and challenges," Materials, vol. 13, no. 22, p. 5174, 2020.
    [18] J. Piprek, Handbook of Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs, and Amplifiers, Vol. 1. CRC Press, 2017.
    [19] J. Piprek, Nitride semiconductor devices: principles and simulation. John Wiley & Sons, 2007.
    [20] A. Romanov, T. Baker, S. Nakamura et al., "Strain-induced polarization in wurtzite III-nitride semipolar layers," Journal of Applied Physics, vol. 100, no. 2, p. 023522, 2006, doi: https://doi.org/10.1063/1.2218385.
    [21] S. Schulz and O. Marquardt, "Electronic Structure of Polar and Semipolar (11 2¯ 2)-Oriented Nitride Dot-in-a-Well Systems," Physical Review Applied, vol. 3, no. 6, p. 064020, 2015.
    [22] K.-Y. Cheng, III–V Compound Semiconductors and Devices. Springer, 2020.
    [23] S. Roy, S. T. Ahsan, A. H. Howlader et al., "Comparative investigation into polarization field-dependent internal quantum efficiency of semipolar InGaN green light-emitting diodes: A strategy to mitigate green gap phenomenon," Materials Today Communications, vol. 31, p. 103705, 2022, doi: https://doi.org/10.1016/j.mtcomm.2022.103705.
    [24] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva et al., "Carrier mobility model for GaN," Solid-State Electronics, vol. 47, no. 1, pp. 111-115, 2003, doi: https://doi.org/10.1016/S0038-1101(02)00256-3.
    [25] I. Vurgaftman and J. n. Meyer, "Band parameters for nitrogen-containing semiconductors," Journal of Applied Physics, vol. 94, no. 6, pp. 3675-3696, 2003.
    [26] M. A. Caro, S. Schulz, and E. P. O’Reilly, "Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides," Physical Review B, vol. 88, no. 21, p. 214103, 2013, doi: http://dx.doi.org/10.1103/PhysRevB.88.214103.
    [27] A. N. Donald, Semi-Conductor Physics & Devices. Tata McGraw Hill Education Private Limited, 2006.
    [28] P. Rinke, M. Winkelnkemper, A. Qteish et al., "Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN," Physical Review B, vol. 77, no. 7, p. 075202, 2008, doi: http://dx.doi.org/10.1103/PhysRevB.77.075202.
    [29] J. Piprek, Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier, 2013.
    [30] 盧廷昌, 半導體雷射導論. 五南, 2008.
    [31] V. Brudnyi, "BN, AlN, GaN, InN: charge neutrality level, surface, interfaces, doping," Russian Physics Journal, vol. 59, pp. 2186-2190, 2017.
    [32] J. Cho, E. F. Schubert, and J. K. Kim, "Efficiency droop in light‐emitting diodes: Challenges and countermeasures," Laser & Photonics Reviews, vol. 7, no. 3, pp. 408-421, 2013, doi: https://doi.org/10.1002/lpor.201200025.
    [33] F. Schwierz, "An electron mobility model for wurtzite GaN," Solid-state electronics, vol. 49, no. 6, pp. 889-895, 2005, doi: https://doi.org/10.1016/j.sse.2005.03.006.
    [34] R. Saroosh, T. Tauqeer, S. Afzal et al., "Performance enhancement of AlGaN/InGaN MQW LED with GaN/InGaN superlattice structure," IET Optoelectronics, vol. 11, no. 4, pp. 156-162, 2017, doi: https://doi.org/10.1049/iet-opt.2016.0141.
    [35] S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors. John Wiley & Sons, 2009.
    [36] S. Khatsevich and D. Rich, "The effects of crystallographic orientation and strain on the properties of excitonic emission from wurtzite InGaN/GaN quantum wells," Journal of Physics: Condensed Matter, vol. 20, no. 21, p. 215223, 2008, doi: https://doi.org/10.1088/0953-8984/20/21/215223.
    [37] J. Piprek, R. Farrell, S. DenBaars et al., "Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers," presented at the IEEE photonics technology letters, 2005.
    [38] M. Caro, S. Schulz, and E. O’Reilly, "Hybrid functional study of the elastic and structural properties of wurtzite and zinc-blende group-III nitrides," Physical Review B, vol. 86, no. 1, p. 014117, 2012, doi: https://doi.org/10.1103/PhysRevB.86.014117.
    [39] A. Strittmatter, J. E. Northrup, N. M. Johnson et al., "Semi‐polar nitride surfaces and heterostructures," physica status solidi (b), vol. 248, no. 3, pp. 561-573, 2011, doi: https://doi.org/10.1002/pssb.201046422.
    [40] C.-K. Li and Y.-R. Wu, "Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs," presented at the IEEE transactions on electron devices, 2011.
    [41] Y. Kawaguchi, C.-Y. Huang, Y.-R. Wu et al., "Influence of polarity on carrier transport in semipolar (20-2-1) and (20-21) multiple-quantum-well light-emitting diodes," Applied Physics Letters, vol. 100, no. 23, p. 231110, 2012, doi: https://doi.org/10.1063/1.4726106.
    [42] F. Akyol, D. Nath, S. Krishnamoorthy et al., "Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes," Applied Physics Letters, vol. 100, no. 11, p. 111118, 2012, doi: https://doi.org/10.1063/1.3694967.
    [43] U. T. Schwarz, H. Braun, K. Kojima et al., "Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells," Applied Physics Letters, vol. 91, no. 12, p. 123503, 2007, doi: https://doi.org/10.1063/1.2786602.
    [44] H. Li, H. Zhang, J. Song et al., "Toward heteroepitaxially grown semipolar GaN laser diodes under electrically injected continuous-wave mode: From materials to lasers," Applied Physics Reviews, vol. 7, no. 4, 2020, doi: https://doi.org/10.1063/5.0024236.
    [45] Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, "Investigation of efficiency droop behaviors of InGaN/GaN multiple-quantum-well LEDs with various well thicknesses," presented at the IEEE Journal of selected topics in quantum electronics, 2009.
    [46] M. Tian, H. Yu, M. H. Memon et al., "Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall," Optics Letters, vol. 46, no. 19, pp. 4809-4812, 2021.
    [47] J.-I. Shim and D.-S. Shin, "Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization," Nanophotonics, vol. 7, no. 10, pp. 1601-1615, 2018.

    QR CODE
    :::