跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李昱奇
Yu-Chi Li
論文名稱: 利用脈衝濺鍍法成長單晶鍺薄膜之研究
指導教授: 陳昇暉
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 虛擬鍺基板磁控濺鍍高功率脈衝磁控濺鍍
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用直流脈衝磁控濺鍍法於矽基板磊晶單晶鍺薄膜。鍺的能隙為0.66eV,作為吸收紅外光波長一直有很好的表現,並在光偵測器、太陽能電池均有很好的成果,但鍺的成本比同為半導體的矽高上許多,也因此若能使用矽基鍺薄膜取代鍺基板能減少許多成本支出。
    物理氣相沉積法(PVD)有著無毒和無易爆氣體的安全製程環境,加上製程成本相對CVD低廉許多,但物理上矽和鍺的晶格不匹配造成結晶品質難以提升,差排缺陷亦容易造成暗電流、載子複合區域等問題。
    直流脈衝(Pulsed DC)作為直流磁控濺鍍(DC Magnetron Sputtering, DCMS)的延伸,透過在極短時間切換為供應20V左右的電壓使得電荷確實排除,避免電荷累積,相比傳統DC能提供更高的濺鍍效率。
    原先高功率脈衝磁控濺鍍(High-power Impulse Magnetron Sputtering, HiPIMS)亦被當作DCMS的分支,但其瞬間的高功率使得靶材離子解離產生的自濺鍍因而被視為新的技術,並且在鍍製上因為其極小的占空比不容易導致靶材過熱,在應用面上比Pulsed DC更廣。
    本實驗透過改變濺鍍功率、氫氣流量、偏壓以及改變脈衝時間(on/off time)和頻率來觀察對於鍺薄膜的影響,結果來看,品質最好的鍺薄膜未加入退火的試片XRD半高寬已經到1990 arcsec,且只有些許的拉伸應力,而在受到拉伸應力時,鍺薄膜可以吸收較長波長,是對於應用上也有較好的結果。


    In this research, DC pulsed magnetron sputtering method has been applied to grow a single crystal germanium film on the silicon substrate. The energy bandgap of germanium is 0.66eV which is good for absorbing infrared light wavelength and becomes a popular material for photodetectors and solar cells. However, the cost of germanium is higher than silicon. One of the methods to reduce the cost is applied a germanium thin film on the silicon substrate to replace the germanium substrate.
    Physical vapor deposition (PVD), the process without toxic and explosive gases, is safer than chemical vapor deposition (CVD). However, the physical lattice mismatch between silicon and germanium makes it difficult to improve the crystal quality and eliminate defects. The defects resulted in the dark current and the carrier recombination, pulsed DC is extended from the DC magnetron sputtering, DCMS, by providing 20V in few microseconds to eliminate the charge accumulation on target. In other word, it can improve the sputtering efficiency during process.
    In this research, the high-power impulse magnetron sputtering (HiPIMS) is also applied to a DCMS system. To compare DCMS with HiPIMS, we can find that HiPIMS can ramp up power up to one or two order of magnitudes than DCMS, which can dissociate target material during sputtering. Moreover, a shorter on-time in the impulse means the lower temperature on the target.
    In this experiment, the influences on the germanium films by adjusting the sputtering power, hydrogen flow rate, bias voltage, and changing the pulse time (on/off-time) and frequency have been analyzed. As a result, the good quality germanium film has been fabricated with the XRD FWHM 1990 arcsec, and also with only a little tensile stress successfully.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究目的與方法 3 第二章 基礎理論 4 2-1 鍺薄膜生長機制 4 2-2 鍺薄膜磊晶於矽基板之方法 5 2-3 直流脈衝濺鍍原理與機制 5 2-4 高功率脈衝磁控濺鍍特性 6 2-5 偏壓原理與機制 6 第三章 實驗架構與儀器分析介紹 8 3-1 實驗架構 8 3-1-1製備鍺薄膜與量測 8 3-1-2 高功率脈衝磁控濺鍍製備鍺薄膜與量測 8 3-2 製程設備 8 3-2-1 沉積設備 8 3-3 量測機台 9 3-3-1 X-ray 繞射儀 (X-ray diffraction, XRD) 9 3-3-2 拉曼光譜儀 (Raman Spectrometer) 10 3-3-3 掃描式電子顯微鏡(SEM) 12 3-3-4 原子力電子顯微鏡(AFM) 13 3-3-4 掃描穿透電子顯微鏡(TEM) 14 第四章 結果與討論 15 4-1 直流脈衝濺鍍鍺薄膜量測 15 4-1-1 調變直流功率影響分析 16 XRD量測 16 Raman量測 18 SEM量測 19 AFM量測 20 4-1-2 固定功率調整偏壓之影響分析 21 XRD量測 21 Raman量測 24 SEM量測 26 AFM量測 27 TEM量測 28 4-1-3 固定功率調整氫氣之影響分析 29 XRD量測 29 Raman量測 32 SEM量測 35 AFM量測 35 TEM量測 36 4-2 高功率脈衝磁控濺鍍鍺薄膜量測分析 37 4-2-1 改變儲能時間的影響分析 37 XRD量測 38 Raman量測 40 4-2-2調整偏壓 43 XRD量測 43 Raman量測 44 SEM量測 45 AFM量測 46 TEM量測 46 第五章 結論與未來工作 49 5-1 結論 49 5-2 未來工作 49 參考文獻 50

    [1] REN21 2019年最新再生能源全球狀況報告,取自   https://km.twenergy.org.tw/Data/db_more?id=3657
    [2] D.M. Chapin, C. Fuller and G. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954(25): p. 676-677.
    [3] 太陽能電池wiki
    https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0
    [4] 非晶矽太陽能電池的優缺點https://kknews.cc/zh-tw/tech/9zrnx5.html
    [5] Third-generation photovoltaics, matelialstoday, Volume 10, Issue 11, November 2007, Pages 42-50.
    [6] 矽光子與光連結應用優勢探討https://www.ctimes.com.tw/DispArt/tw/%E5%8F%B0%E5%A4%A7%E7%B3%BB%E7%B5%B1%E6%99%B6%E7%89%87%E4%B8%AD%E5%BF%83%E5%B0%88%E6%AC%84/0909250922FJ.shtml
    [7] GavinConibeer, “Third-generation photovoltaics ”, Materials Today Volume 10, Issue 11, November 2007, Pages 42-50
    [8] 廖上瑩,「反應式直流脈衝磁控濺鍍法製備氮化鎵薄膜」,國立中央大學, 2019。
    [9] 陳佳愔,「高功率脈衝磁控濺鍍遠紅外線抗反射膜之研究」, 國立中央大學, 2019。
    [10] 劉佶隴,「射頻磁控濺鍍矽基鍺薄膜及光偵測器光電特性分析」,中央大學,2019。
    [11] Rodrigo Perez Garcia, “Controlled Deposition of Fullerenes: Effects of Topological nano-Modifications of a Surface on Aggregation and Growth Phenomena”, University of Bristol, December 2018.
    [12] Jugen Michel, et al, “High-Saturation-Power and High-Speed Ge-on-SOI p-i-n Photodetectors”, IEEE ELECTRON device letters, 31, 7, 701-703, 2010.
    [13] 薄膜生長機制-wiki
    https://zh.wikipedia.org/wiki/%E8%96%84%E8%86%9C%E7%94%9F%E9%95%BF%E6%A8%A1%E5%BC%8F
    [14] 太陽能電池複合損失的種類
    https://www.energytrend.com.tw/knowledge/20111213-2973.html
    [15] Shaoying Ke, “Morphological evolution of self-assembled SiGe islands based on a mixed-phase pre-SiGe island layer grown by ion beam sputtering deposition”, Applied Surface Science Volume 328, 15 February 2015, Pages 387-394
    [16] Nyles W. Cody, “Semiconductor buffer structures”, 2007, US 0264801 A1.
    [17] J.M. Hartmann, A.M. Papon, V. Destefanis and T. Billon, Reduced pressure chemical vapor deposition of Ge thick layers on Si(001), Si(011) and Si(111). Journal of Crystal Growth, 2008. 310(24): p. 5287-5296.
    [18] 陳旻毅,「高功率脈衝磁控濺鍍電源的瞬間功率對鍍膜結合力之影響」,逢甲大學出版,2016。
    [19] Setsuo Nakao, “Semiconductor buffer structures ”, IEEE Transactions on plasma science, VOL. 41, NO. 8, AUGUST 2013.
    [20] R. Ichikawa, “Germanium as a Material to Enable Silicon Photonics ”, Silicon Photonics II, 131-141, September 2010.
    [21] 吳哲賢,「偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究」, 國立中央大學,2014。
    [22] 周凌毅,「反應式濺鍍過渡態矽薄膜之研究」,國立中央大學,1999。
    [23] X光繞射一百年 http://chiuphysics.cgu.edu.tw/yun-ju/CGUWeb/SciTheme/Bragg100/HomeBragg.htm
    [24] Raman Spectrometer│拉曼光譜儀分析原理
    https://www.rightek.com.tw/product_detail.php?id=186
    [25] Edinburgh Instruments Blog What is Raman Spectroscopy?
    https://www.edinst.com/blog/what-is-raman-spectroscopy/
    [26] kctech 什麼是SEM?淺談掃描式電子顯微鏡技術
    http://www.kctech.com.tw/zh/desktop-sem-what-is-sem
    [27] Tirzah Abbott, SEM Match Maker Selecting the right SEM for imaging your samples, NUANCE.
    [28] AZO Materials Different Types of SEM Imaging – BSE and Secondary Electron Imaging, Thermo Fisher Scientific Phenom-World BV, Aug 4 2017.
    [29] 原子力顯微鏡基本原理
    http://web1.knvs.tp.edu.tw/AFM/ch2.htm
    [30] 原子力顯微鏡 wiki
    https://zh.wikipedia.org/zh-tw/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C
    [31] 穿透電子顯微鏡-高瞻自然科學教學資源平台
    https://highscope.ch.ntu.edu.tw/wordpress/?p=1599
    [32] 毛亦群,「以濺鍍法製作p-type單晶鍺薄膜於太陽能電池應用」,國立中央大學,2015。
    [33] Ziheng Liu, Low-temperature epitaxial growth of Ge on Si, towards a cost-effective substrate for III-V solar cells, World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC), 29 November 2018: 216-219.
    [34] Douglas D. Cannon, Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications, Appl. Phys. Lett. 84, 906, 2004.
    [35] N. Korivi. Low-temperature deposition of polycrystalline germanium on silicon by magnetron sputtering, Electronics Letters, Volume: 54, Issue: 17:1043-1045, 2018.
    [36] Takeo Nakano, Effect of the target bias voltage during off-pulse period on the impulse magnetron sputtering, Vacuum 84(12):1368

    QR CODE
    :::