| 研究生: |
邱淳銜 Chun-Hsien Chiu |
|---|---|
| 論文名稱: |
濁水溪沖積扇之多元化地層下陷監測資料融合與時序關聯性分析 Data fusion and time series correlation analysis of diversified land subsidence monitoring of Chuoshui alluvial fan |
| 指導教授: |
倪春發
Chuen-Fa Ni |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 地層下陷 、水準測量 、GPS固定站 、磁環式分層監測井 、DTW |
| 外文關鍵詞: | Land subsidence, Leveling, GPS, MLCW, DTW |
| 相關次數: | 點閱:32 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地層下陷是台灣目前急需解決的環境問題之一,除沿海低漥地區因地層下陷所產生之淹水問題外,台灣高鐵路線上之下陷嚴重區,將造成交通安全層面上的疑慮。目前高鐵路線上所經過之下陷區屬濁水溪沖積扇最為嚴重,其中以虎尾、土庫、元長及褒忠等鄉鎮為主要下陷區。地層下陷的觀測方法有許多種,其中精準度最高且分布最廣的觀測資料為水準測量。但此方法之缺點是監測時間為一年一次,監測頻率過長,而地下水水位為影響地層下陷影響的主因,地下水會隨著旱季或雨季而有水位的高低起伏,因此一年一次的監測頻率是明顯不足的。為解決各種觀測資料在時間、空間上精度與頻率差異,所產生資料無法直接互補之問題,本研究專注於濁水溪沖積扇地下水區,使用kriging插值,假定採樣點之間的距離或方向可以用於反映插值結果的空間相關性,利用kriging插值出水準測量資料與GPS固定站資料相同時間內的地表高程變化圖,並計算兩者間的誤差,再以此誤差對各個月份的GPS地表沉陷進行融合,結合水準測量結果的精準度以及GPS固定站的高監測頻率,得到不同月份的地表沉陷分布,用來分析地下水位與地層下陷的關係,發現地表高程變化會根據不同的地質條件及雨季與旱季的地下水水位變化,而有抬升及下陷的發生。此外,本研究藉由磁環式監測井與水準樁的觀測資料進行整合,評估地表下300m之壓縮量,並與地表觀測下陷分布比較,探討區域較深層的壓縮狀況,結果表明深層壓縮的熱區與嚴重地層下陷熱區相吻合,推斷深層抽水造成的壓縮對於雲林土庫地區的地層下陷有明顯的占比。為了探討地下水水位與地層下陷間的關聯,以DTW方法分析雲林高鐵沿線3km封井防治對策執行前後地下水位與地層下陷之關係,發現在封井後的淺層地下水位與地層下陷有較高的相似性,說明減抽前主要為深層抽水影響地層下陷。
Land subsidence is one of the environmental problems that Taiwan needs to solve urgently. In addition to the flooding problem caused by the land subsidence in the coastal low-lying areas, the serious subsidence of the Taiwan high-speed railway line will cause doubts on the level of traffic safety. At present, the Chuoshui alluvial fan is the most serious subsidence area passing through the high-speed railway line. Among them, Huwei, Tuku, Yuanchang and Baozhong towns are the main subsidence areas. There are many kinds of observation methods for land subsidence, among which the most accurate and most widely distributed observation data is leveling. However, the disadvantage of this method is that the monitoring time is once a year and the monitoring frequency is too long. The groundwater level is the main cause of the impact of land subsidence. The groundwater level will fluctuate with the dry season or the rainy season, so the monitoring frequency is once a year. It is obviously insufficient. In order to solve the problem of the difference in accuracy and frequency of various observational data in time and space, the generated data cannot be directly complementary. This research focuses on the groundwater area of the Chuoshui alluvial fan and using kriging interpolation, assuming that the distance or direction between the sampling points can be used to reflect the spatial correlation of the interpolation results, using kriging to interpolate the leveling data and the GPS fixed station data within the same time The surface elevation change map of, and calculate the error between the two, and then use the error to integrate the GPS surface subsidence of each month, and combine the accuracy of the leveling results and the high monitoring frequency of the GPS fixed station to obtain the surface subsidence of different months The distribution is used to analyze the relationship between groundwater level and land subsidence. It is found that changes in surface elevation will cause uplift and subsidence according to different geological conditions and changes in groundwater level in rainy and dry seasons. In addition, this study integrates the observation data of magnetic ring monitoring wells and leveling piles to evaluate the compression of 300m below the surface, and compares it with the distribution of observations on the surface to explore the compression status of the deeper layers of the region. The results show that the heat of deep compression The area coincides with the severe land subsidence hot zone, and it is inferred that the compression caused by deep pumping has a significant proportion of the land subsidence in the Yunlin Tuku area. In order to explore the relationship between groundwater level and land subsidence, the DTW method was used to analyze the relationship between groundwater level and land subsidence before and after the implementation of the prevention and control measures for the 3km well closure along the Yunlin High-speed Railway. The similarity indicates that before the reduction of pumping, it is mainly due to deep pumping that affected the land subsidence.
Bouwer, H. Land subsidence and cracking due to ground‐water depletion a. Groundwater 1977, 15, 358-364.
[2] Gumilar, I.; Abidin, H.Z.; Hutasoit, L.M.; Hakim, D.M.; Sidiq, T.P.; Andreas, H. Land Subsidence in Bandung Basin and its Possible Caused Factors. Procedia Earth and Planetary Science 2015, 12, 47-62.
[3] Xu, Y.-S.; Shen, S.-L.; Ren, D.-J.; Wu, H.-N. Analysis of Factors in Land Subsidence in Shanghai: A View Based on a Strategic Environmental Assessment. Sustainability 2016, 8, 573.
[4] 水利署. 多元水源智慧調控-1.水資源資料盤查及數據整合; MOEAWRA1070311; 2018.
[5] 水利署. 動態地下水管理標準整合與枯旱度預測系統建置總報告; MOEAWRA1080297; 2019.
[6] 水利署. 應用AI與大數據分析評估各用水標的抽水量; MOEAWRA1090263; 2019.
[7] 水利署. 臺灣沿海地區海水入侵之調查、評估與防治對策研擬; MOEAWRBST900013V2; 2001.
[8] Phien-Wej, N.; Giao, P.; Nutalaya, P. Field experiment of artificial recharge through a well with reference to land subsidence control. Engineering Geology 1998, 50, 187-201.
[9] 水利署. 地下水補注機制水力特性調查分析先驅研究; MOEAWRA0970330; 2009.
[10] 水利署. 彰化雲林地區地下水補注推動計畫; MOEAWRA0980283; 2010.
[11] 水利署. 台灣地區地層下陷監測井施設及其試驗分析; 2003.
[12] Hung, W.-C.; Hwang, C.; Chang, C.-P.; Yen, J.-Y.; Liu, C.-H.; Yang, W.-H. Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences 2010, 59, 1535-1548.
[13] 水利署. 多時域雷達干涉技術應用於地層下陷監測之研究; MOEAWRA1060345; 2017.
[14] 水利署. 台灣地區地層下陷之監測、調查及分析. 2004.
[15] Yang, Y.-J.; Hwang, C.; Hung, W.-C.; Fuhrmann, T.; Chen, Y.-A.; Wei, S.-H. Surface Deformation from Sentinel-1A InSAR: Relation to Seasonal Groundwater Extraction and Rainfall in Central Taiwan. Remote Sensing 2019, 11, 2817.
[16] 洪偉嘉. 應用多重感應器監測雲林地區三維變形. 2008.
[17] Hsu, W.-C.; Chang, H.-C.; Chang, K.-T.; Lin, E.-K.; Liu, J.-K.; Liou, Y.-A. Observing Land Subsidence and Revealing the Factors That Influence It Using a Multi-Sensor Approach in Yunlin County, Taiwan. Remote Sensing 2015, 7, 8202-8223.
[18] 中央地質調查所. 濁水溪沖積扇水文地質調查研究報告; 1995.
[19] 中興工程顧問股份有限公司. 濁水溪沖積扇地面地下水聯合運用管理模式建立與機制評估; 2007.
[20] 水利署. 雲林地區地層下陷監測井及GPS固定站之規劃建置與觀測分析; MOEAWRA0940282; 2006.
[21] 水利署. 地層下陷自記式分層監測機制之研究; MOEAWRA1050176; 2016.
[22] Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing human dominance of tropical forests. Science 2015, 349, 827-832.
[23] Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 2007, 28, 823-870.
[24] Pohl, C.; Van Genderen, J.L. Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing 1998, 19, 823-854.
[25] Richards, J.A. Analysis of remotely sensed data: the formative decades and the future. IEEE Transactions on Geoscience and Remote Sensing 2005, 43, 422-432.
[26] Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sensing 2016, 8, 70.
[27] 蔡宗旻; 顏沛華; 郭錦燐. 屏東平原流通係數空間變異性之探討. 農業工程學報 2009, 55, 65-80.
[28] Burrough, P.A.; McDonnell, R.A.; McDonnell, R.; Lloyd, C.D. Principles of geographical information systems, ed.; Ed.^Eds.; Oxford university press: 2015.
[29] Keogh, E.J.; Pazzani, M.J. Derivative dynamic time warping. Proceedings of the 2001 SIAM international conference on data mining, 2001; p.^pp. 1-11.
[30] GPS Lab of Academia Sinica. Available online: http://gps.earth.sinica.edu.tw(accessed on 06 February 2020).