| 研究生: |
葉玉婕 Yu-Chieh Yeh |
|---|---|
| 論文名稱: |
統計分析2008年西南氣流實驗期間對流系統的雙偏極化雷達拉格朗日特徵 Statistical Analysis of Dual-Polarization Parameter Lagrangian Features of Convective Storms During SoWMEX/TiMREX |
| 指導教授: |
張偉裕
Wei-Yu Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 雙偏極化雷達 、對流胞辨識 、對流胞追蹤 |
| 外文關鍵詞: | Dual-Polarization Parameter, Storm identification, Storm tracking |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西南氣流伴隨梅雨鋒面不僅能為台灣帶來豐沛的降水量,過多的雨水也會帶來致災的風險。本篇研究希望透過了解對流在結構上的變化、動力場的特徵及微物理過程的演化,診斷出對流胞當時的發展特徵,進一步分析這些過程隨時間上的表現。而要做到上述事情,必須仰賴對流胞辨識與追蹤技術, 「SMART 」 (Storm Motion Analysis by Radar Tracking) 就此誕生。本篇研究收集了2008年西南氣流聯合觀測實驗中,NCAR SPOL 所提供的雷達雙偏參數資料,透過給定回波門檻與面積門檻來進行對流胞的辨識。研究中利用兩個不同的回波門檻,針對相同的降水事件,定義出兩種對流胞範圍。低回波門檻辨識出的對流胞稱為「parent-cell」,用以選取整個系統的降水範圍;高回波門檻辨識出的對流胞稱為「child-cell」,用來找出對流胞的核心區域。針對兩種辨識結果,皆能計算出如下的對流胞特徵:幾何中心(X, Y)、回波權重中心(𝑋𝑧, 𝑌𝑧)、面積(A)、長軸與短軸(𝑟1 與 𝑟2)、方向性(θ)以及該對流胞範圍內的雙偏參數(DPM)。因此,隨著對流胞的移動,這些特性將得到進一步的檢驗。
本研究透過38個個案統計與5個個案分析的結果,定量上的探討雙偏參數在水平及垂直上的分離現象與特徵。其結果指出,當對流胞發展至成熟階段,雙偏參數在水平方向會有顯著的 ZDR 與 KDP 分離現象。而從垂直分離趨勢可知,當對流胞從發展至成熟階段,雙偏參數會出現正轉負的分離趨勢;反之,當對流胞從成熟至消散階段,則會出現負轉正的分離趨勢。透過趨勢上的轉換,更能幫助我們了解其雙偏參數隨對流胞發展至不同階段的特徵。本研究分析結果顯示了利用雙偏極化參數診斷對流胞發展的潛力。
The mesoscale convective systems (MCSs) associated with East Asia summer south-westly monsoon and Mei-Yu front play essential role in contributing heavy precipitation in Taiwan. A storm identification and tracking technique (SMART: Storm Motion Analysis by Radar Tracking) using radar data was applied to investigate various characteristics of structural evolutions, dynamic, microphysics processes of these precipitation systems. The NCAR SPOL data during SoWMEX/TiMREX was analyzed to derived the storm characteristics. Storms were identified by considering two reflectivity threshold values. Lower reflectivity threshold value reveals entire precipitation system. On the other hand, the higher reflectivity threshold value locates the core of the convective system. The dual-reflectivity threshold technique distinguishes ‘child-cell’ (convective core zone) from ‘parent-cell’ (complete precipitation area). After identifying child-cell and parent-cell, the storm properties including geometric centroid (X, Y), reflectivity-weighted centroid (𝑋𝑧, 𝑌𝑧), size (A), major and minor axes (𝑟1 𝑎𝑛𝑑 𝑟2), orientation of the major axes relative to the x axis (θ) and dual-polarimetric parameters within the storm area are analyzed. In addition, microphysical characteristics of convective system are investigated by the vertical slop and horizontal separation distance of various dual-polarimetric measurements (DPMs). These properties thus are examined with the evolution of the storm track.
There are 38 cases selected for statistical analysis and 5 cases selected for detailed case study. Both horizontal and vertical microphysics characteristics are analyzed quantitatively. The tendency of vertical slope of dual-polarimetric parameters vary from positive to negative values during the developing stage of the storm. Subsequently, the tendency varies from negative to positive during dissipating stage. The analysis has shown the potential of diagnosing the storm development by utilizing dual-polarimetric parameters. Furthermore, pronounced horizontal separation distance between ZDR and KDP centers can be noticed during mature state of the storm. As the result shows, the separation distance has high correlation to the mid-level wind condition (6 km).
汪志偉,2009:「利用剖風儀與二維雨滴譜儀對西南氣流實驗SoWMEX/TiMREX不同降水系統的觀測研究」。國立中央大學碩士論文,122頁。
邱思翰,2010:「利用WRF模式研究SoWMEX IOP3期間地形效應對於強降水個案之影響」。國立中央大學碩士論文,96頁。
吳冠伯,2019:「2005-2015年暖季弱綜觀環境下對流降水系統之特徵統計」。中國文化大學碩士論文,87頁。
邵彥銘,2015:「利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降水預報:SoWMEX IOP8 個案分析」。國立中央大學碩士論文,95頁。
洪晨語,2020:「雙偏極化雷達參數變分法定量降水估計評估:五分山S波段與C波段」。國立中央大學碩士論文,66頁。
陳奕如,2009:「SoWMEX實驗期間雨滴粒徑分佈特性之研究」。國立中央大學碩士論文,99頁。
陳新淦、黃椿喜、呂國臣、洪景山及張博雄, 2016: 「利用雷達回波影像辨識及篩選技術發展極短期系集定量降水預報」。大氣科學,44,No.1,1-31。
陳尉豪,2011:「同化多都普勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析」。國立中央大學碩士論文,96頁。
陳立昕,2017:「利用系及估計與檢驗對流尺度之預報誤差:SoWMEX IOP8 個案分析」。國立中央大學碩士論文,91頁。
陳勁宏,2018:「不同微物物理方案在雲可解析模式的系集預報分析:SoWMEX IOP8 個案」。國立中央大學碩士論文,99頁。
梁晏彰,2019:「分析不同微物理參數化之系及預報誤差:SoWMEX-IOP8 對流個案」。國立中央大學碩士論文,110頁。
童崇祺,2009:「西南氣流實驗期間之降水特徵與相關環境型態」。國立台灣大學碩士論文,90頁。
廖浩彥,2014:「利用雷達觀測直接反演氣象變數進行資料同化以改進短期定量降水預報-2008 SoWMEX IOP8 個案分析」。國立中央大學碩士論文,104頁。
鄭翔文,2017:「雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMEX IOP#8 個案研究」。國立中央大學碩士論文,80頁。
錢伊筠,2010:「WRF模式Double-moment雲微物理參數化法對於SoWMEX IOP-4個案降水模擬之敏感度研究」,國立中央大學碩士論文,130頁。
盧可昕,2018:「利用雙偏極化雷達及雨滴譜儀觀測資料分析2008年西南氣流期間強降雨事件的雲物理過程」,國立中央大學碩士論文,91頁。
蔡直謙,2009:「SoWMEX/TiMREX個案中雨滴粒徑分佈之收支分析」。國立中央大學碩士論文,71頁。
Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting ─ a radar-based methodology. J. Atmos. Oceanic Technol., 10, 785-797.
Fridlind, A. M., and Coauthors, 2019: Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking. Atmos. Meas. Tech., 12, 2979-3000.
Gunn, R. and G. D. Kinzer, 1949: The terminal velocity of fall water droplets in stagnant air. J. Meteor., 6, 243-248.
Homeyer, C. R., T. N. Sandmæl, C. K. Potvin, and A. M. Murphy, 2020: Distinguishing characteristics of tornadic and nontornadic supercell storms from composite mean analyses of radar observations. Mon. Wea. Rev., 148, 5015-5040.
Hu, M-K, 1962: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8, 179-187.
Hu, J., D. Rosenfeld, D. Zrnic, E. Williams, P. Zhang, J. C. Snyder, A. Ryzhkov, E. Hashimshoni, R. Zhang, and R. Weitz, 2019: Tracking and characterization of convective cells through their maturation into stratiform storm elements using polarimetric radar and lightning detection. Atmos. Res., 226, 192-207.
Johnson, J. T., P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263 276.
Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Operat. Meteor., 1, 226-242.
Li, L., W. Schmid, and J. Joss, 1995. Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 34, 1286-1300.
Loeffler, S. D., and M. R. Kumjian, 2018: Quantifying the separation of enhanced ZDR and KDP regions in nonsupercell tornadic storms. Wea. Forecasting, 33, 1143-1157.
Loeffler, S. D., M. R. Kumjian, M. Jurewicz, and M. M. French, 2020: Differentiating between tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size sorting. Geophysical Research Letters, 47, e2020GL088242.
Rinehart, R. E., and E. T. Garvey, 1978: Three-dimensional storm motion detection by conventional weather radar. Nature, 273, 287-289.
Ryzhkov, A. V., and M. R. Kumjian, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667-685.
Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69-76.
Steiner, M., R. Houze, and S. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978-2007.
Tong, H., V. Chandrasekar, K. Knupp, and J. R. Stalker 1998: Multiparameter radar observations of time evolution of convective storms: Evaluation of water budgets and latent heating rates, J. Atmos. Oceanic Technol., 15(5), 1097-1109.
Vila, D. A., L. A. T. Machado, H. Laurent, and I. Velasco, 2008: Forecast and Tracking the evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233-245.
Wapler, K., 2021: Mesocyclonic and non-mesocyclonic convective storms in Germany: Storm characteristics and life-cycle. Atmos. Res., 248.
Yang, Y., X. Chen, and Y. Qi, 2013: Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J. Geophys. Res.: Atmos., 118, 1896-1905.
Yuter S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941-1963.