跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉逸彬
Yi-Pin Yeh
論文名稱: 圓錐貫入試驗中砂土音射特性之研究
Study of Acoustic Emission Characteristics in Sand of Cone Penetration Test
指導教授: 張惠文
Huei-Wen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 120
中文關鍵詞: 頻譜分析錐尖阻抗均方根音壓音射發生率
外文關鍵詞: frequency spectrum analysis, acoustic emission rate, root mean square of sound pressure, cone resistance
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 圓錐貫入試驗由於操作簡單、迅速以及擷取資料具連續性,常應用於現地土層研判與土壤分類。本研究利用音射的量測技術,在錐尖加裝一微音器,探討圓錐貫入土體時,伴隨貫入過程所產生的音射。
    本研究應用音射於圓錐貫入試驗中,利用圓形土槽與霣降儀等設備,在不同平均粒徑、相對密度和覆土應力條件下進行貫入試驗,同時量測錐尖阻抗與音射訊號。所得資料透過音射計數、均方根計算、快速傅立葉轉換等方法處理後,作一分析與探討。
    研究結果顯示,均方根音壓與音射發生率隨平均粒徑變大有明顯增加的趨勢,錐尖阻抗則因平均粒徑的不同會有微小的影響。就不同相對密度與覆土應力條件下之結果顯示,錐尖阻抗會因相對密度或覆土應力之增加而增加,而均方根音壓則因相對密度而變化的幅度相當小,但仍會受到覆土應力的增加而提高,提高的趨勢不太明顯。不同加載方式的情況下,錐尖阻抗與均方根音壓雖有差距,但差距不大。此外,頻譜分析方面,西螺砂於不同試驗條件下,頻譜分布圖之趨勢都很相似,主要頻率分佈約在3~4kHz之間。


    Cone Penetration Test (CPT) can be operated easily and quickly. CPT is usually applied in investigation of soil classification and soil layer verification. This research used the technique of sound measurement with a small microphone installed in the cone tip to measure the acoustic signal during the penetration of cone tip.
    One circular chamber and a movable sand pluviator were used to carry out a series of laboratory cone penetration tests under different relative densities and overburden pressures. The data waa recorded by data acquisition system, and acoustic emission (AE) rate, root mean squar (RMS) of sound pressure and frequency spectrum were analyzed.
    From the experimental results, the root mean square of sound pressure and AE rate increased with the increase of average grain size. The influences of average grain size on cone resistance ate small. Furthermore, it is shown that the cone resistance would be increased with the increase of relative density and overburden pressure. However, the root mean square of sound pressure is slightly varied with the change of relative density and overburden pressure. Then the difference between the root mean square of sound pressure and cone resistance under different pressure mode is not great. Besides, the analyses of frequency spectrum of Shiluo Sand showed that the major frequency distribution of these tests are located at the range of 3~4kHz.

    中文摘要I 英文摘要II 目錄III 表目錄VIII 照片目錄IX 圖目錄X 符號說明XV 第一章 緒論1 1.1 研究動機與目的1 1.2 研究方法2 1.3 論文內容2 第二章 文獻回顧4 2.1 圓錐貫入試驗4 2.1.1 圓錐貫入之影響因素4 2.1.2 圓錐貫入試驗之工程應用5 2.1.2.1 土壤分類與研判5 2.1.2.2 液化潛能評估6 2.2 室內模型土槽之貫入試驗8 2.2.1 模型槽試驗8 2.2.2 邊界條件的控制9 2.2.3 模型槽之影響與評估 9 2.3 音波與大地工程11 2.3.1 聲音的原理與特性11 2.3.2 音射原理12 2.3.3 音射訊號發生機制與波形13 2.3.3.1 音射發生機制13 2.3.3.2 音射訊號波形13 2.3.4 音射訊號特性分析14 2.3.4.1 時間域分析14 2.3.4.2 頻率域分析16 2.3.5 音射相關研究16 2.3.5.1 土壤音射之研究16 2.3.5.2 岩石音射之研究17 2.3.6 微音錐貫入試驗18 2.3.6.1 微音錐貫入試驗影響因素19 2.3.6.2 微音錐相關研究21 第三章 試驗土樣、儀器設備及試驗方法43 3.1 試驗土樣43 3.2 試驗儀器及相關設備 44 3.2.1 反力式圓錐貫入設備 44 3.2.2 微音錐貫入儀44 3.2.3 壓力式圓形土槽45 3.2.4 移動式霣降儀46 3.2.5 資料擷取分析設備46 3.2.5.1 錐尖阻抗量測儀器47 3.2.5.2 音波量測儀器47 3.3 試驗方法與原理49 3.3.1 最大及最小乾單位重試驗49 3.3.1.1 最大乾單位重50 3.3.1.2 最小乾單位重50 3.3.2 試體製作方法51 3.3.3 試體加載方式52 3.3.4 微音錐貫入試驗52 3.4 音波訊號處理53 3.4.1 背景噪音的校正與濾除53 3.4.2 取樣定理54 3.4.3 門檻值設定56 3.4.4 快速傅立葉轉換56 第四章 試驗結果分析與討論74 4.1 微音錐基本測試74 4.1.1 微音錐內電壓與實際音壓之關係74 4.1.2 背景噪音之濾除與影響75 4.2 錐尖阻抗之探討77 4.2.1 錐尖阻抗、相對密度與覆土應力之關係77 4.2.2 錐尖阻抗與平均粒徑、加壓方式之關係79 4.3 均方根音壓之探討80 4.3.1 均方根音壓、相對密度與覆土應力之關係80 4.3.2 均方根音壓與平均粒徑、加壓方式之關係81 4.3.3 均方根音壓與錐尖阻抗之關係82 4.4 音射發生率之探討83 4.4.1 音射發生率、相對密度與覆土應力之關係83 4.4.2 音射發生率與錐尖阻抗之關係83 4.5 頻譜分析之探討84 第五章 結論與建議113 5.1 結論113 5.2 建議114 參考文獻115

    1.土質工學會,土質試驗法,日本土質工學會,第172-188頁 (1979)。
    2.王志偉,「微音錐應用於土壤音射特性之研究」,碩士論文,國立中央大學土木工程學系,第67-111頁,中壢(2002)。
    3.何家榮,「圓錐貫入試驗中土壤音壓之研究」,碩士論文,國立中央大學土木工程學系,第68-74頁,中壢(2001)。
    4.李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,第6-44頁,台南(2003)。
    5.宋雲崴,「土壤微震音放射之量測研究」,碩士論文,國立中央大學土木工程學系,第82-132頁,中壢(1999)。
    6.周彥廷,「土石流地聲特性之研究-不同大小及材質之地聲頻譜判識」,碩士論文,國立成功大學水利既海洋工程研究所,第14-18頁,台南 (2003)。
    7.林盈宏,「飽和砂土中圓錐貫入引發之音射特性」,碩士論文,國立中央大學土木工程學系,第73-103頁,中壢(2004)。
    8.林宸生、邱創乾、陳德清,「數位訊號處理實物入門」,高立圖書有限公司,台北(1999)。
    9.洪兆慶,「音波式圓錐貫入試驗與砂土參數相關性之研究」,碩士論文,國立中央大學土木工程學系,第91-149頁,中壢(1997)。
    10.徐萬樁,噪音與振動控制,協志工業叢書,台北,第100-106頁(1984)。
    11.梁能,「圓錐貫入試驗中土壤微震音之量測」,碩士論文,國立中央大學土木工程學系,第74-108頁,中壢(1997)。
    12.莊傳業,「微震音放射在圓錐貫入試驗中之應用」,碩士論文,國立中央大學土木工程學系,第94-160頁,中壢(1996)。
    13.許懷後,「模擬現況中砂土之圓錐貫入試驗」,博士論文,國立,交通大學土木工程學系,第7-83頁,新竹(1999)。
    14.陳斗生,「電子式圓錐貫入儀之工程應用」,地工技術雜誌,第13期,第62~76頁(1986)。
    15.黃建民,「音波式圓錐貫入試驗於土層界面判定之應用」,碩士論文,國立中央大學土木工程學系,第87-116頁,中壢(2000)。
    16.劉志昇,「南海低頻環境噪音之分析」,碩士論文,國立中山大學海下技術研究所,第22-24頁,高雄(2003)。
    17.歐志忠,「黏性土壤中柱體側向抵抗與評估方法之研究」,碩士論文,國立中央大學土木工程學系,第68-70頁,中壢(1991)。
    18.蘇德勝,噪音原理及控制,臺隆出版社,臺北,第26-27、67、262頁(1991)。
    19.Douglas, B.J., and Olsen, R.S., “Soil classification using electric cone penetrameter,” Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, Oct., St. Louis, pp.209-227 (1981).
    20.Hardy, H.R., “Application of acoustic emission techniques to rock mechanics research,” Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp.41-83 (1972).
    21.Hardy, H.R. Jr., “Application of acoustic emission techniques to rock and rock structures : a state of the art review,” Acoustic Emission in Geotechnical Engineering Practice, ASTM STP750, American Society for Testing and Materials, pp.4-92 (1981).
    22.Holden, J.C., “Laboratary research on static cone penetrometers,” University of Florida, Gainsville, Department of Civil Engineering, Internal Report, CE-SM-71-1 (1971).
    23.Holden, J.C., “History of the first six CRB calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, Potsdam, New York, pp.1-12 (1991).
    24.Houlsby, G.T., and Hitchman, R., “Calibration chamber tests of a cone penetrometer in Sand,” Geotechnique, Vol. 38, No. 1, pp.39-44 (1988).
    25.Jamiolkowski, M., Ghionna, V.N., Lancellotta, R., and Pasqualini, E., “New Correlations of Penetration Tests for Design Practice,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, ESOPT-Ⅱ, pp.263-295 (1988).
    26.Koerner, R.M., McCabe, W.M., and Lord, A.E.,“Acoustic Emission Behavior and Monitoring of Soils,” Acoustic Emissions in Geotechnical Engineering Practice, ASTM STP 750, American Society for Testing and Materials, pp.93-141 (1981).
    27.Koerner, R.M. and Lord, A.E., Jr., “Subsurface soil monitoring via acoustic emissions,” Use of In Situ tests in Geotechnical Engin- eering : Proceedings of In Situ ''86, Specialty Conference, ASCE, pp.176-190 (1986).
    28.Massarsch, K. R., “Acoustic penetration testing,” Proceeding of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore (1986).
    29.Muromachi, T., “Phono-sounding apparatus-discrimination of soil type by sound,” Proceedings of the First European Symposium on Penetration Testing, Amsterdam, ESOPT-Ⅰ, Vol. 21, pp.110-112 (1974).
    30.Olsen, R.S. and Mitchell, J.K., “CPT stress normalization and predication of soil classification,” Proceedings of the International Symposium on Cone Penetration Testing-CPT’95, Linkoping, Sweden, October (1995).
    31.Parkin, A.K., and Lunne, L., “Boundary Effects in the Laboratory Calibration of a Cone Penetrometer for Sand,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, ESOPT-Ⅱ, pp.761-768 (1982).
    32.Parkin, A.K., “The calibration of cone penetration,” Proceedings of the First International Symposium on Penetration Testing/ISOPT1, Orlando, Florida, pp.221-243 (1988).
    33.Robertson, P.K. and Campanella, R.G., “Interpretation of Cone Penetration Tests,” Canadian Geotechnical Journal, No.20, pp.718-745 (1983).
    34.Robertson, P.K., “In situ testing and its application to foundation engineering,” Canadian Geotechnical Journal, No.23, pp.573-594 (1986).
    35.Robertson, P.K., “Soil classification using the cone penetration test,” Canadian Geotechnical Journal, No. 27, pp.151-158 (1990).
    36.Robertson, P.K. and Wride C.E., “Evaluating cyclic liquefaction potential using the cone penetration test,” Canadian Geotechnical Journal, No. 35, pp.442-459 (1998).
    37.Salgado, R., Mitchell, J.K., and Jamiolkowski, M., “Cavity expansion and penetration resistance in sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.4, pp.344-354 (1998).
    38.Spanner, J.C., Brown, A., Hay, D.R., Notvest, K., and Pollock, A.,“Foundationals of acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5, pp11-44 (1987).
    39.Tanimoto, K., and Nakamura J., “Studies of acoustic emission in soils,” Acoustic Emissions in Geotechnical Engineering Practice, ASTM STP 750, American Society for Testing and Materials, pp. 164-173 (1981).
    40.Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer,” Ph.D. Dissertation, University of California, Berkeley (1983).
    41.Villet, W.C.B, “Acoustic emissions during the static penetration of soils,” Ph.D. Dissertation, University of California, Berkeley (1981).
    42.Villet, W.C.B., Mitchell, J.K., and Tringale, P.T., “Acoustic emissions generated during the quasi-static cone penetration of soils,” Acoustic Emissions in Geotechnical Engineering Practice, ASTM STP 750, American Society for Testing and Materials, pp.174-193 (1981).

    QR CODE
    :::