跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周貝倫
Pei-Lun Chou
論文名稱: 純化程序對奈米碳管表面特性影響之研究
指導教授: 秦靜如
Ching-Ju Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 72
中文關鍵詞: 拉曼光譜熱重量分析純化奈米碳管氮孔隙吸附傅立葉
外文關鍵詞: Boehm’s titration, FTIR, field emission scanning electron microscopy, TGA, Raman spectroscopy, purification, CNTs
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著奈米科技的發展,奈米材料的結構特性與應用,成為目前科技發展研究的重點之ㄧ。奈米碳管的發現對於奈米材料的發展具重大的影響,由於奈米碳管優異的物理與化學特性,因此具有相當大的應用潛力。
    合成後的奈米碳管,會含有大量的金屬觸媒顆粒以及碳不純物,影響後續奈米碳管的應用,所以必須先經過純化程序以提高奈米碳管的純度,然而純化程序會對奈米碳管的物理與化學特性造成改變。本研究藉由不同氧化劑與氧化劑濃度對奈米碳管進行純化,探討純化前後對於奈米碳管表面特性的影響。研究結果顯示,純化程序改變奈米碳管表面物理與化學性質,不同氧化劑純化後奈米碳管的純度,以硝酸為最高,鹽酸次之,其次為過氧化氫,由於硝酸純化後奈米碳管的金屬含量明顯降低,純度因而提升。由氮孔隙吸附分析發現,不同氧化劑純化後奈米碳管表面積與微孔體積皆有增加的趨勢,僅9M 硝酸純化後奈米碳管為例外,氧化劑濃度越高,對奈米碳管表面結構破壞也越大。經傅立葉紅外光譜分析發現,未經處理之奈米碳管表面並無官能基存在,純化後奈米碳管表面化學性質改變,並在缺陷處產生羧基、酚基、羰基三種官能基,不同官能基的含量未必隨著氧化劑濃度增加而增加。實驗結果顯示,純化程序對奈米碳管表面特性造成改變,不同氧化劑純化奈米碳管的影響也不同。


    The objective of this work is to study the influences of the oxidant and their concentration on the physical and the chemical properties of the purified CNTs. The properties of the raw and the purified CNTs were examined by thermal gravimetric analysis (TGA), Raman spectroscopy, nitrogen adsorption, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and Boehm’s titration. The TGA results showed that HNO3 can effectively remove amorphous carbon and metal particles while HCl and H2O2 have limited removal efficiency. Raman spectra showed that the G/D ratio of the CNTs increased when the CNTs were purified by HNO3, and that decreased when the CNTs were purified by both HCl and H2O2. Generally speaking, HNO3 is the most effective oxidant, followed by HCl, and H2O2 is the least. It was also found that the total surface area and the micropore volume were increased in all oxidation conditions used in this work, except 9 M HNO3. This was because the CNTs were severely damaged by 9M HNO3 and bundled together. Purifications also introduce functional groups on the CNTs, such as carboxylic, lactone, and phenolic groups. However, the amount of introduced functional groups showed no correlation to the concentration of the oxidation agents.

    圖目錄………………………………………………………………………Ⅳ 表目錄………………………………………………………………………Ⅵ 第一章 前言 1 1-1研究緣起 1 1-2研究目的 2 1-3 研究流程 3 第二章 文獻回顧 4 2-1 奈米碳管基本特性 4 2-2 奈米碳管之製備 8 2-3 奈米碳管的應用 12 2-4 奈米碳管的純化 15 2-5 奈米碳管的吸附現象 20 2-6 Boehm’s titration 22 第三章 實驗方法 23 3-1實驗設備與材料 23 3-1-1實驗設備 23 3-1-2實驗材料與藥品 25 3-2實驗方法 26 3-2-1奈米碳管之純化程序 26 3-2-2奈米碳管定性分析(分析方法) 28 3-2-3 Boehm’s titration 29 第四章 結果與討論 31 4-1熱重量分析 31 4-1-1硝酸純化後奈米碳管純度變化 32 4-1-2鹽酸純化後奈米碳管純度變化 34 4-1-3過氧化氫水溶液純化後奈米碳管純度變化 36 4-2場發射電子顯微鏡觀察 40 4-2-1硝酸純化後奈米碳管表面型態 40 4-2-2鹽酸酸純化後奈米碳管表面型態 42 4-2-3過氧化氫水溶液純化後奈米碳管表面型態 44 4-3拉曼光譜分析 46 4-3-1硝酸純化後之拉曼光譜 47 4-3-2鹽酸純化後之拉曼光譜 48 4-3-3過氧化氫水溶液純化後之拉曼光譜 49 4-4表面積與孔隙分析 51 4-4-1硝酸純化後表面積與孔隙變化 51 4-4-2鹽酸純化後表面積與孔隙變化 54 4-4-3過氧化氫水溶液純化後奈米碳管變化 56 4-5表面官能基鑑定 59 4-5-1硝酸純化後官能基鑑定 60 4-5-2鹽酸純化後官能基鑑定 61 4-5-3過氧化氫水溶液純化後官能基鑑定 63 第五章 結論與建議 65 5-1結論 65 5-2建議 66 參考文獻 67

    [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354,
    pp.56
    (1991).
    [2] 李元堯,「21 世紀的尖端材料-奈米碳管」,化工技術,第11 卷第2 期,
    第140-159 頁,2003。
    [3] 洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49
    卷第1 期,第23-30 頁,2002。
    [4] 王裕祥,「利用高分子材料及電弧放電法製造奈米碳管」,碩士論文,
    中正大學化學工程研究所,嘉義,2002。
    [5] 化工產業技術知.網: http://www.chemtech.com.tw
    [6] 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50
    卷第2 期,第18 至25 頁,2003。
    [7] M. Yudasaka, ”Mechanism of the effect of NiCo Ni and Co catalysts
    on the yield of single-wall carbon nanotubes forced by pulsed Nd:YAG
    laser ablation ,” Journal of Physical Chemistry B, 103, pp.11-17
    (1999).
    [8] F Kokai, ”Synthesis of single-wall carbon nanotubes by millisecond-
    pulsed CO2 laser vaporization at room temperature,”Chemical Physics
    Letters, 316, pp.11-17 (2000).
    [9] Z.W.Pan, S.S. Xie, B.H. Chang, L.F. Sun, and W.Y. Wang, ”Direct
    growth of aligned open cabon nanotubes by chemical vapor deposition”
    Chemical Physics Letters, 299, pp 97-102 (1999).
    [10] J. Kong, M. Cassell and H.G. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes” Chemical Physics
    Letters, 292, pp 567-574 (1998).
    [11] A. C. Dillon, K. M. Jones, and T. A. Bekkedahl, “Storage of
    hydrorgen in single-walled carbon nanotubes.” Nature, 386, pp.377-
    379 (1997).
    [12] Sander J. Tans, Alwin R. M. Verschueren, and Cees Dekker,
    “Room-temperature transistor based on a single carbon nanotube,”
    Nture, 393, pp.49-51 (1998).
    [13] Dengsong Zhang, Liyi Shi, Jianhui Fang, and Kai Dai, “NaCl
    adsorption from saltwater solution using carbon nanotubes/activated
    carbon composite electrode,” Materials Letters, 60, pp.360-363
    (2006).
    [14] Kai Dai, Liyi Shi, Dengsong Zhang, and Jianhui Fang, “NaCl
    adsorption in multi-walled carbon nanotubes/activated carbon
    combination electrode,” Chemical Engineering Science, 61, pp.428-433
    (2006).
    [15] Fu-Hsiang Ko, Chung-Yang Lee, Chu-Jung Ko, and Tieh-Chi Chu,
    “Purification of multi-walled nanotubes through microwave heating of
    nitric acid in a closed vessel,” Carbon, 43, pp.727-733 (2005).
    [16] Avetik R. Harutyunyan, Bhabendra K. Pradhan, Jiping Chang, Gugang
    Chen, and Peter C. Eklund, ”Purification of single-walled carbon
    nanotubes by selective microwave heating of catalyst particles,”
    Carbon,106, pp.8671-8675 (2002).
    [17] Konstantin B. Shelimov, Rinat O. Esenaliev, Andrew G. Rinzler, and
    Chad B. Huffman, “Purification of single-walled carbon nanotubes by
    ultrasonically assisted filtration,” Chemical Physics Letters, 282,
    pp.429-434 (1998).
    [18] L. S. K. Pang, J. D. Saxby, and S. P. Chatfield, “Thermogravimetric
    analysis of carbon nanotubes and nanoparticles,“ Journal of Physical
    Chemistry, 27, pp.6941-6942 (1993).
    [19] S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of
    carbon nanotubes by oxidation using carbon dioxide,” Nature, 362, 520
    (1993).
    [20] G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, and S. Roth,
    “Seperation of carbon nanotubes by size exclusion chromatograpgy,”
    Chemical Communications, 3, pp. 435-436 (1998).
    [21] Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding, and Cailu Xu,
    “Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized
    carbon nanotubes,” Carbon, 41, pp.1057-1062 (2003).
    [22] K. Hernadi, A. Siska, L. Thien-Nga, L. Forro, and I. Kiricsi,
    “Reactivity of different kinds of carbon during oxidative
    purification of catalytically prepared carbon nanotubes,” Solid
    State Ionics, 141-142, pp.203-209 (2001).
    [23] Hui Hu, Bin Zhao, Mikhail E. Itkis, and Robert C. Haddon, “Nitric
    acid purification of single-walled carbon nanotubes,” Journal of
    Physical Chemistry B, 107, pp.13838-13842 (2003).
    [24] Erik Dujardin, Thomas W. Ebbesen, Ajit Krishnan, and Michael M. J.
    Treacy, “Purification of single-shell nanotubes,” Advanced
    Materials, 10(8), pp.611-613 (1998).
    [25] Dengsong Zhang, Liyi Shi, Jianhui Fang, Xuanke Li, and Kai Dai,
    “Preparation and modification of carbon nanotubes,” Materials
    Letters, 59, pp.4044-4047 (2005).
    [26] X.H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng, G.Zhang, and Z.Z. Chen,
    “Non-destructive purification of multi-walled carbon nanotubes
    produced by catalyzed CVD,” Materials Letters, 57, pp.734-738 (2002).
    [27] Y. Zhang, Z. Shi, Z. Gu, and S.Iijima, “Structure modification of
    single-wall carbon nanotubes,” Carbon, 38, pp.2055-2059 (2000).
    [28] Jeong-Mi Moon, Kay Hyeok An, and Young Hee Lee, “High-yield
    purification process of singlewalled carbon nanotubes,” Journal of
    Physical Chemistry B, 105, pp.5677-5681 (2001).
    [29] Iosif Daniel Rosca, Fumio Watari, Motohiro Uo, and Tsukasa Akasaka,
    “Oxidation of multiwalled carbon nanotubes by nitric acid,” Carbon,
    43(15), pp.3124-3131 (2005).
    [30] Richard Q. Long, and Ralph T. Yang, “Carbon nanotube as superior
    sorbent for dioxin removal,” Journal of the American Chemical
    Society,123, pp.2058-2059 (2001).
    [31] 劉旭娟、詹舒斐、鄧宗禹、金光祖、黃志彬,「改良式固相萃取技術應用於
    超純水中鄰苯二甲酸酯類之微量分析」,第二屆環境保護與奈米科技學術研討
    會,清華大學,2005
    [32] Yan-hui Li, Shuguang Wang, Anyuan Cao, Dan Zhao, Xianfeng Zhang,
    Cailu Xu, Zhaokun Luan, Dianbo Ruan, Ji Liang, Dehai Wu, and Bingqing
    Wei, “Adsorption of fluoride from water by amorphous alumina
    supported on carbon nanotubes, ”Chemical Physics Letters, 350, pp.412-416 (2001).
    [33] 許世杰、李孟珊、盧重興,「奈米碳管吸附異丙醇廢氣之研究」,第二 屆環境保護與奈米科技學術研討會,清華大學,2005
    [34] 石立節,「奈米碳管酸純化前後表面特性之變化」,碩士論文,中央大 境工程研究所中壢,2005
    [35] Yan-hui Li, Shuguang Wang, Jinquan Wei, Xianfeng Zhang, Cailu Xu,
    haokun Luan, Dehai Wu, and Bingqing Wei, “Lead adsorption on
    carbon nanotubes,” Chemical Physics Letters, 357, pp.263-266 (2002).
    [36] Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding,and Cailu Xu,
    “Adsorption of cadmium(Ⅱ) from aqueous solution by surface
    oxidized carbon nanotubes,” Carbon, 41, pp.1057-1062 (2003).
    [37] Yan-hui Li, Jun Ding, Zhaokun Luan, Zechao Di, Yuefeng Zhu, Cailu Xu, ehai Wu, and Bingqing Wei, “Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, 41, pp.2787-2792 (2003).
    [38] 洪肇嘉、蔡正國、黃國軒、謝淑惠,「複合奈米碳管吸附水溶重金屬之反應與
    再生之探討」,第三十屆廢水處理技術研討會,中壢市,2005
    [39] Xiangke Wang, Changlun Chen, Wenping Hu, Aiping Ding, Di Xu, and
    Xiang Zhou, “Sorption of 243Am(Ⅲ) to multiwall cabon nanotubes,”
    Environmental Science Technology, 39, pp.2856-2860 (2005).
    [40] J. Barkauskas and F.S. Cannon, “Potentimetric titrations :
    characterize functional groups and adsorbed species on activated
    carbon.,” http:// www.chf.vu.lt/CWN/C03_PT.pdf
    [41] Yehya EI-Sayed and Teresa J. Bandosz, “Effect of increased basicity
    of activated carbon surface on valeric acid adsorption from aqueous
    solution activated carbon,” Chemical Physics Letters, 5, pp.4892-
    4898 (2003).
    [42] H. L. Chiang, C. P. Huang, and P. C. Chiang, “The surface
    characteristics of activated carbon as affected by ozone and alkaline
    treatment,” Chemosphere, 47, pp.257-265 (2002).
    [43] Karla L. Strong, David P. Anderson, Khalid Lafdi, and John N.Kuhn,
    “Purification process for single-wall carbon naontubes,” Carbon, 41,
    pp.1477-1488 (2002)
    [44] Cheonl-Ming Yang, Katsumi Kaneko, Masako Yudasaka, and Sumio Iijima,
    “Effect of purification on pore structure of HiPco single-walled
    carbon nanotube aggregates,” Nano Letters, 2(4), pp.385-388 (2002).

    QR CODE
    :::