| 研究生: |
周貝倫 Pei-Lun Chou |
|---|---|
| 論文名稱: |
純化程序對奈米碳管表面特性影響之研究 |
| 指導教授: |
秦靜如
Ching-Ju Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 拉曼光譜 、熱重量分析 、純化 、奈米碳管 、氮孔隙吸附 、傅立葉 |
| 外文關鍵詞: | Boehm’s titration, FTIR, field emission scanning electron microscopy, TGA, Raman spectroscopy, purification, CNTs |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著奈米科技的發展,奈米材料的結構特性與應用,成為目前科技發展研究的重點之ㄧ。奈米碳管的發現對於奈米材料的發展具重大的影響,由於奈米碳管優異的物理與化學特性,因此具有相當大的應用潛力。
合成後的奈米碳管,會含有大量的金屬觸媒顆粒以及碳不純物,影響後續奈米碳管的應用,所以必須先經過純化程序以提高奈米碳管的純度,然而純化程序會對奈米碳管的物理與化學特性造成改變。本研究藉由不同氧化劑與氧化劑濃度對奈米碳管進行純化,探討純化前後對於奈米碳管表面特性的影響。研究結果顯示,純化程序改變奈米碳管表面物理與化學性質,不同氧化劑純化後奈米碳管的純度,以硝酸為最高,鹽酸次之,其次為過氧化氫,由於硝酸純化後奈米碳管的金屬含量明顯降低,純度因而提升。由氮孔隙吸附分析發現,不同氧化劑純化後奈米碳管表面積與微孔體積皆有增加的趨勢,僅9M 硝酸純化後奈米碳管為例外,氧化劑濃度越高,對奈米碳管表面結構破壞也越大。經傅立葉紅外光譜分析發現,未經處理之奈米碳管表面並無官能基存在,純化後奈米碳管表面化學性質改變,並在缺陷處產生羧基、酚基、羰基三種官能基,不同官能基的含量未必隨著氧化劑濃度增加而增加。實驗結果顯示,純化程序對奈米碳管表面特性造成改變,不同氧化劑純化奈米碳管的影響也不同。
The objective of this work is to study the influences of the oxidant and their concentration on the physical and the chemical properties of the purified CNTs. The properties of the raw and the purified CNTs were examined by thermal gravimetric analysis (TGA), Raman spectroscopy, nitrogen adsorption, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and Boehm’s titration. The TGA results showed that HNO3 can effectively remove amorphous carbon and metal particles while HCl and H2O2 have limited removal efficiency. Raman spectra showed that the G/D ratio of the CNTs increased when the CNTs were purified by HNO3, and that decreased when the CNTs were purified by both HCl and H2O2. Generally speaking, HNO3 is the most effective oxidant, followed by HCl, and H2O2 is the least. It was also found that the total surface area and the micropore volume were increased in all oxidation conditions used in this work, except 9 M HNO3. This was because the CNTs were severely damaged by 9M HNO3 and bundled together. Purifications also introduce functional groups on the CNTs, such as carboxylic, lactone, and phenolic groups. However, the amount of introduced functional groups showed no correlation to the concentration of the oxidation agents.
[1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354,
pp.56
(1991).
[2] 李元堯,「21 世紀的尖端材料-奈米碳管」,化工技術,第11 卷第2 期,
第140-159 頁,2003。
[3] 洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49
卷第1 期,第23-30 頁,2002。
[4] 王裕祥,「利用高分子材料及電弧放電法製造奈米碳管」,碩士論文,
中正大學化學工程研究所,嘉義,2002。
[5] 化工產業技術知.網: http://www.chemtech.com.tw
[6] 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50
卷第2 期,第18 至25 頁,2003。
[7] M. Yudasaka, ”Mechanism of the effect of NiCo Ni and Co catalysts
on the yield of single-wall carbon nanotubes forced by pulsed Nd:YAG
laser ablation ,” Journal of Physical Chemistry B, 103, pp.11-17
(1999).
[8] F Kokai, ”Synthesis of single-wall carbon nanotubes by millisecond-
pulsed CO2 laser vaporization at room temperature,”Chemical Physics
Letters, 316, pp.11-17 (2000).
[9] Z.W.Pan, S.S. Xie, B.H. Chang, L.F. Sun, and W.Y. Wang, ”Direct
growth of aligned open cabon nanotubes by chemical vapor deposition”
Chemical Physics Letters, 299, pp 97-102 (1999).
[10] J. Kong, M. Cassell and H.G. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes” Chemical Physics
Letters, 292, pp 567-574 (1998).
[11] A. C. Dillon, K. M. Jones, and T. A. Bekkedahl, “Storage of
hydrorgen in single-walled carbon nanotubes.” Nature, 386, pp.377-
379 (1997).
[12] Sander J. Tans, Alwin R. M. Verschueren, and Cees Dekker,
“Room-temperature transistor based on a single carbon nanotube,”
Nture, 393, pp.49-51 (1998).
[13] Dengsong Zhang, Liyi Shi, Jianhui Fang, and Kai Dai, “NaCl
adsorption from saltwater solution using carbon nanotubes/activated
carbon composite electrode,” Materials Letters, 60, pp.360-363
(2006).
[14] Kai Dai, Liyi Shi, Dengsong Zhang, and Jianhui Fang, “NaCl
adsorption in multi-walled carbon nanotubes/activated carbon
combination electrode,” Chemical Engineering Science, 61, pp.428-433
(2006).
[15] Fu-Hsiang Ko, Chung-Yang Lee, Chu-Jung Ko, and Tieh-Chi Chu,
“Purification of multi-walled nanotubes through microwave heating of
nitric acid in a closed vessel,” Carbon, 43, pp.727-733 (2005).
[16] Avetik R. Harutyunyan, Bhabendra K. Pradhan, Jiping Chang, Gugang
Chen, and Peter C. Eklund, ”Purification of single-walled carbon
nanotubes by selective microwave heating of catalyst particles,”
Carbon,106, pp.8671-8675 (2002).
[17] Konstantin B. Shelimov, Rinat O. Esenaliev, Andrew G. Rinzler, and
Chad B. Huffman, “Purification of single-walled carbon nanotubes by
ultrasonically assisted filtration,” Chemical Physics Letters, 282,
pp.429-434 (1998).
[18] L. S. K. Pang, J. D. Saxby, and S. P. Chatfield, “Thermogravimetric
analysis of carbon nanotubes and nanoparticles,“ Journal of Physical
Chemistry, 27, pp.6941-6942 (1993).
[19] S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of
carbon nanotubes by oxidation using carbon dioxide,” Nature, 362, 520
(1993).
[20] G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, and S. Roth,
“Seperation of carbon nanotubes by size exclusion chromatograpgy,”
Chemical Communications, 3, pp. 435-436 (1998).
[21] Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding, and Cailu Xu,
“Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized
carbon nanotubes,” Carbon, 41, pp.1057-1062 (2003).
[22] K. Hernadi, A. Siska, L. Thien-Nga, L. Forro, and I. Kiricsi,
“Reactivity of different kinds of carbon during oxidative
purification of catalytically prepared carbon nanotubes,” Solid
State Ionics, 141-142, pp.203-209 (2001).
[23] Hui Hu, Bin Zhao, Mikhail E. Itkis, and Robert C. Haddon, “Nitric
acid purification of single-walled carbon nanotubes,” Journal of
Physical Chemistry B, 107, pp.13838-13842 (2003).
[24] Erik Dujardin, Thomas W. Ebbesen, Ajit Krishnan, and Michael M. J.
Treacy, “Purification of single-shell nanotubes,” Advanced
Materials, 10(8), pp.611-613 (1998).
[25] Dengsong Zhang, Liyi Shi, Jianhui Fang, Xuanke Li, and Kai Dai,
“Preparation and modification of carbon nanotubes,” Materials
Letters, 59, pp.4044-4047 (2005).
[26] X.H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng, G.Zhang, and Z.Z. Chen,
“Non-destructive purification of multi-walled carbon nanotubes
produced by catalyzed CVD,” Materials Letters, 57, pp.734-738 (2002).
[27] Y. Zhang, Z. Shi, Z. Gu, and S.Iijima, “Structure modification of
single-wall carbon nanotubes,” Carbon, 38, pp.2055-2059 (2000).
[28] Jeong-Mi Moon, Kay Hyeok An, and Young Hee Lee, “High-yield
purification process of singlewalled carbon nanotubes,” Journal of
Physical Chemistry B, 105, pp.5677-5681 (2001).
[29] Iosif Daniel Rosca, Fumio Watari, Motohiro Uo, and Tsukasa Akasaka,
“Oxidation of multiwalled carbon nanotubes by nitric acid,” Carbon,
43(15), pp.3124-3131 (2005).
[30] Richard Q. Long, and Ralph T. Yang, “Carbon nanotube as superior
sorbent for dioxin removal,” Journal of the American Chemical
Society,123, pp.2058-2059 (2001).
[31] 劉旭娟、詹舒斐、鄧宗禹、金光祖、黃志彬,「改良式固相萃取技術應用於
超純水中鄰苯二甲酸酯類之微量分析」,第二屆環境保護與奈米科技學術研討
會,清華大學,2005
[32] Yan-hui Li, Shuguang Wang, Anyuan Cao, Dan Zhao, Xianfeng Zhang,
Cailu Xu, Zhaokun Luan, Dianbo Ruan, Ji Liang, Dehai Wu, and Bingqing
Wei, “Adsorption of fluoride from water by amorphous alumina
supported on carbon nanotubes, ”Chemical Physics Letters, 350, pp.412-416 (2001).
[33] 許世杰、李孟珊、盧重興,「奈米碳管吸附異丙醇廢氣之研究」,第二 屆環境保護與奈米科技學術研討會,清華大學,2005
[34] 石立節,「奈米碳管酸純化前後表面特性之變化」,碩士論文,中央大 境工程研究所中壢,2005
[35] Yan-hui Li, Shuguang Wang, Jinquan Wei, Xianfeng Zhang, Cailu Xu,
haokun Luan, Dehai Wu, and Bingqing Wei, “Lead adsorption on
carbon nanotubes,” Chemical Physics Letters, 357, pp.263-266 (2002).
[36] Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding,and Cailu Xu,
“Adsorption of cadmium(Ⅱ) from aqueous solution by surface
oxidized carbon nanotubes,” Carbon, 41, pp.1057-1062 (2003).
[37] Yan-hui Li, Jun Ding, Zhaokun Luan, Zechao Di, Yuefeng Zhu, Cailu Xu, ehai Wu, and Bingqing Wei, “Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, 41, pp.2787-2792 (2003).
[38] 洪肇嘉、蔡正國、黃國軒、謝淑惠,「複合奈米碳管吸附水溶重金屬之反應與
再生之探討」,第三十屆廢水處理技術研討會,中壢市,2005
[39] Xiangke Wang, Changlun Chen, Wenping Hu, Aiping Ding, Di Xu, and
Xiang Zhou, “Sorption of 243Am(Ⅲ) to multiwall cabon nanotubes,”
Environmental Science Technology, 39, pp.2856-2860 (2005).
[40] J. Barkauskas and F.S. Cannon, “Potentimetric titrations :
characterize functional groups and adsorbed species on activated
carbon.,” http:// www.chf.vu.lt/CWN/C03_PT.pdf
[41] Yehya EI-Sayed and Teresa J. Bandosz, “Effect of increased basicity
of activated carbon surface on valeric acid adsorption from aqueous
solution activated carbon,” Chemical Physics Letters, 5, pp.4892-
4898 (2003).
[42] H. L. Chiang, C. P. Huang, and P. C. Chiang, “The surface
characteristics of activated carbon as affected by ozone and alkaline
treatment,” Chemosphere, 47, pp.257-265 (2002).
[43] Karla L. Strong, David P. Anderson, Khalid Lafdi, and John N.Kuhn,
“Purification process for single-wall carbon naontubes,” Carbon, 41,
pp.1477-1488 (2002)
[44] Cheonl-Ming Yang, Katsumi Kaneko, Masako Yudasaka, and Sumio Iijima,
“Effect of purification on pore structure of HiPco single-walled
carbon nanotube aggregates,” Nano Letters, 2(4), pp.385-388 (2002).