| 研究生: |
儲德鋒 Der-Fong Chu |
|---|---|
| 論文名稱: |
鋁/銅液相擴散接合研究與應用 Study and application Al/Cu liquid phase diffusion bonding |
| 指導教授: |
顏炳華
Biing-Hua Yan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 硬銲 、散熱器 、液固擴散接合 、銅合金 、鋁合金 、軟銲 |
| 外文關鍵詞: | Al alloy, Cu alloy, Soldering, Brazing, Heat Sink, liquid phase diffusion bonding |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
近年來電子及相關科技產業的快速發展,產品設計除了要求『輕、薄、短、小、多樣化』外,電子微處理器的運算速度及效能提昇已成為未來電子及電腦科技追求之設計目標,而影響電子零組件品質及壽命的散熱問題如何同步突破解決,儼然成為主要的關鍵技術。
鋁合金散熱器(Heat Sink)目前雖為提供電子元件最簡易且直接散熱的方式,當中央處理器(CPU)的工作頻率高達1G以上、發熱功率超過50W時選用銅製散熱器則較鋁合金優勢,而以純銅製又因其比重大、成本高而提高了3C產品之重量及成本。因此本實驗採以結合純銅及鋁合金結合,且以不添加填料或助銲劑方式進行鋁/銅複合接合之技術開發與研究。
接合完成的試件,分別利用SEM、EDX、XRD、EPMA觀察和分析接合界面及剪力試驗破斷面,機械性質方面則藉由MTS拉伸試驗機及維氏微硬度機,分析評估剪力強度值及接合界面硬度分佈的變化。
鋁銅液固擴散接合法在精確的溫度-時間控制下,形成共晶液相層反應,冷卻凝固後的擴散接合界面層內雖然形成AlCu、AlCuMg 等共晶化合物,造成熱傳導率的略微降低,但是比較於一般採用Sn-Ag填料之軟銲…等接合方法,鋁銅液固擴散接合的熱傳導率優異許多。同時其接合的剪力強度值可達到13Mpa以上,此一強度值可滿足在散熱元件的應用需求。
ABSTRACT
Both electric and relation technology industrial develop fast in these years. The product design technology in addition to ask more and more the material with light weightiness, high specific strength and excellent heat scattering, the latest electric and computer design purpose emphasized increase calculate speed and effectiveness as well. It’s clearer that high temperature of radiator is key factor cause life and quality to debase. Thus, how to find out one giant solution to reduce temperature of radiator in the meanwhile is very important.
The Al alloy radiator can provide electric elements one simple and direct cooling method. Supposing CPU work frequency increase upon 1G bites simultaneously bring about a lot heat over 500W, Cu alloy is more better excellent than Al alloy. The property of pure Cu has high specific weight and high cost which easily raise product weight and cost. Thus, an experiment integrated Al alloy and Cu alloy, in the meantime without offer filler or flux during welding process on Al-Cu compound joint technology development and research.
The welded specimen utilize SEM, EDX, XRD, EPMA instrument to observe and analysis joint interface and fracture area passes through
shear test respectively. Depend on the MTS equipment and micro-hardness instrument evaluation shear strength value and micro-hardness value distribution on joint interface respectively.
The Al-Cu liquid-solid diffusion joint method based on precise temperature and time, create eutectic-liquid reaction lever. The cooled eutectic-liquid reaction lever formation existence eutectic compound like AlCu, AlCuMg which cause heat conduction to lower slightly, nevertheless, it’s still excellent than other method which add Sn-Ag filler during welding. Thus, the Al-Cu liquid-solid diffusion joint method has much heat conduction ability. It’s shear strength value on joint locate exceed 13Mpa. This value suffice certainty for apply to radiator.
第六章 參考文獻
1. 李勝隆、劉國雄等,工程材料科學,全華科技圖書。
2. 龔吉合等譯,材料科學導論,滄海書局。
3. 行政院國家科學委員會專題研究計畫成果報告,高散熱效能鎂合金散熱片的研究開發,91年8月1日至92年7月31日,大葉大學車輛工程學系。
4. 楊雪靜,薄板鋁合金6061 T6電子束銲接研究及表面完整性觀察,碩士論文,國防大學中正理工學院兵器系統工程研究所,桃園,1992。
5. 何康生等譯,真空擴散銲接,國防工業出版社,1976。
6. 莊東漢著,低溫擴散接合填料研究開發,金屬工業研究發展中心,經濟部九十二年度科技研究發展專案合作研究計畫。
7. ASM, Metals Handbook,Volume 8, Eighth Edition
8. ASTM B152-Copper Sheet, Strip, Plate, and Rolled Bar1
9. ASTM B209-Aluminum and Aluminum-Alloy Sheet and Plate1
10. E.A.Brandes, Smithells Metal Reference Book, Seventh Edition。
11. Abdulrahman Abed, Issam S. Jalham, Alan Hendry, “Wetting and reaction between -sialon, stainless steel and Cu-Ag brazing alloys containing Ti,” Journal of the European Ceramic Society, Vol.21, pp.283-290, 2001.
12. H. Assadi, A. A. Shirzadi and E. R. Wallach, “Transient liquid phase diffusion bonding under a temperature gradient: modelling of the interface morphology,” Acta mater. Vol.49, pp.31-39, 2001.
13. J. M. Gomez de Salazar, F. J. Mendez, A. Urena, J. M. Guilemany and B. G. Mellor, “Transient liquid phase (TLP) diffusion bonding of a copper based shape memory alloy using silver as interlayer,” Scipta Materials, Vol.37, No.6, pp.861-867, 1997.
14. Duan-Jen Wang and Shinn-Tyan Wu, “The wettability of copper-containing aluminum melt on sapphire,” Acta metall. mater. Vol.43, No.8, pp.2917-2920, 1995.
15. Y. E. Wu, Y. L. Lo, “Surface protection for AA8090 aluminum alloy by diffusion bonding,” Theoretical and Applied Fracture Mechanics, Vol.38, pp.71-79, 2002.
16. Anne Sunwoo and Reynold Lum, “Superplastic deformation enhanced diffusion bonding of aluminum alloy 7475,” Scripta Metallurgica et Materialia, Vol.33, No.4. pp.639-644, 1995.
17. Liu Liming, Zhu Meili, Pan Longxiu, Wu Lin, “Studying of micro-bonding in diffusion welding joint for composite,” Materials Science and Engineering A, Vol.315, pp.103-107, 2001.
18. K. Kitazono, A. Kitajima, E. Sato, J. Matsushita, K. Kuribayashi, “Solid-state diffusion bonding of closed-cell aluminum foams,” Materials Science and Engineering A, Vol.327, pp.128-132, 2002.
19. M Mozetic, A Zalar and M Drobnic, “Self-controlled diffusion of Al in Cu thin film,” Vacuum, Vol.50, No.1-2, pp.1-3, 1998.
20. K. A. Peterson, I. Dutta, M. Chen, ”Processing and characterization of diffusion-bonded Al-Si interfaces,” Journal of Materials Processing Technology, Vol.145, pp.99-108, 2004.
21. M. Alam, M. Y. Inal, “Permeation behavior of deuterium implanted in electro-and sputter-deposited copper coatings on aluminum alloy substrates,” Journal of Nuclear Materials, Vol.295, pp.27-30, 2001.
22. R. F. Wolffenbuttel, “Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond,” Sensors and Actrators A, Vol.62, pp.680-686, 1997.
23. M. S. Yeh and T. H. Chuang, “Low-pressure diffusion bonding of SAE316 stainless steel by inserting a superplastic interlayer,” Scritpa Metallurgica et Materialia, Vol.33, No.8, pp.1277-1281, 1995.
24. Y. Yamamoto, S. Uemura, K. Yoshida, M. Kajihara, “Kinetic features of diffusion induced recrystallization in the Cu(Ni) system at 873K,” Materials Science and Engineering A, Vol.333, pp.262-269, 2002.
25. R. S. Bushby and V. D. Scott, “Joining aluminum/nicalon composite by diffusion bonding,” Composites Engineering, Vol.5, No.8, pp.1029-1042, 1995.
26. Leslie S. Perkins, Andrew E. DePristo, “Heterogeneous adatom diffusion on fcc(100) surfaces: Ni, Cu, Rh, Pd, and Ag,” Surface Science, Vol.319, pp.225-231, 1994.
27. A. S. Zuruzi, H. Li, G. Dong, “Effects of surface roughness on the diffusion bonding of Al alloy 6061 in air,” Materials Science and Engineering A, Vol.270, pp.244-248, 1999.
28. Hidetoshi Somekawa, Hiroyuki Hosokawa, Hiroyuki Watanabe, Kenji Higashi, “Diffusion bonding in superplastic magnesium alloys,” Materials Science and Engineering A, Vol.339, pp.328-333, 2003.
29. S. Sommadossi, W. Gust, E. J. Mittemeijer, “Characterization of the reaction process in diffusion-soldered Cu/In-48 at.% Sn/Cu joints,” Materials Chemistry and Physics, Vol.77, pp.924-929, 2002.
30. Lu Xin, Hai Jin-tao, Bai Bingzhe, Wang Zhongren, “A comparison of the mesomechanism of dynamic deformation between copper and aluminum,” Journal of Materials Processing Technology, Vol.70, pp.228-230, 1997.
31. S. Murali, N. Srikanth, Charles J. Vath III, “An analysis of intermetallics formation of gold and copper ball bonding on thermal aging,” Materials Research Bulletin, Vol.38, pp.637-646, 2003.