跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李家洪
Jia-hong Li
論文名稱: 連續模糊控制系統之非二次穩定性分析
Stabilization Analysis for Non-quadratic Continuous-time Fuzzy Control Systems
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 80
中文關鍵詞: 強健控制系統線性矩陣不等式模糊控制非二次穩定性分析寬鬆矩陣變數
外文關鍵詞: non-quadratic, Takagi-Sugeno(T-S), LMI, slack matrix variables
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研究連續時間強健 (Robust) 控制系統及連續時間 Takagi-Sugeno(T-S)模糊控制系統的非二次(non-quadratic)穩定寬鬆條件; 我們利用波雅定理(Polya Theorem)的代數性質加上寬鬆矩陣變數(slack matrix variables)來建立一組寬鬆的線性矩陣不等式(LMI),因為非二次(non-quadratic)穩定的分析加上寬鬆矩陣變數 (slack matrix variables) 的使用,使得此組線性矩陣不等式(LMI)的求解保守性更進一步的降低,亦即當使用波雅定理(Polya Theorem)時,齊次多項式的階數不用太高,就可以找到解,這是本論文最大的優點;最後會提出幾個例子來證明我們理論的優越性。
    關鍵字:強健(Robust)控制系統 Takagi-Sugeno(T-S)模糊控制系統、 非二次 (non-quadratic)穩定、 波雅定理 (Polya Theorem)、寬鬆矩陣變數(slack matrix variables)、 線性矩陣不等式 (LMI)


    In this thesis, we investigate non-quadratic ralaxation for continuous-time robust control systems
    and continuous-time fuzzy control systems, which are characterized by parameter-dependent LMIs (PD-LMIs), exploiting
    the algebraic property of Polya Theorem to construct a family of finite-dimensional LMI relaxations with righ-hand-side
    slack matrices that release conservatism. Lastly, numerical
    experiments to illustrate the advantage of relaxations, being less conservative and effective, are provided.
    it keyword: Robust control systems; Takagi-Sugeno fuzzy control systems; Non-quadratic relaxations;
    Parameter-dependent LMIs (PD-LMIs); Polya Theorem; Slack matrices; Linear matrix inequality (LMI).

    中 文 摘 要 i 英 文 摘 要 ii 謝誌 iii 一、背景介紹 1 1.1 文 獻 回 顧 ...1 1.2 研 究 動 機...2 1.3 論 文 結 構 ...3 1.4 符 號 標 記 ...4 1.5 預 備 定 理...7 二、連 續 強 健 閉 迴 路 系 統 之 寬 鬆 穩 定 條 件... 8 2.1控 制 系 統 的 架 構...8 2.2波 雅 定 理(Polya Theorem) ...8 2.3連 續 強 健 閉 迴 路 系 統 之 穩 定 條 件...9 2.3.1 使 用 共 同 李 亞 普 若 夫 函 數 ...9 2.3.2 使 用 非 共 同 李 亞 普 若 夫 函 數 ...10 iv 2.3.3 非 共 同 李 亞 普 若 夫 函 數 結 合 寬 鬆 矩 陣 變 數...16 三、強 健 系 統 電 腦 模 擬...23 3.1 例 子   1...23 3.2 例 子   2...25 3.3 例 子   3 ...30 四、連 續 模 糊 閉 迴 路 系 統 之 寬 鬆 穩 定 條 件... 35 4.1 控 制 系 統 的 架 構...35 4.2 連 續 模 糊 閉 迴 路 系 統 之 穩 定 條 件...35 4.2.1 使 用 共 同 李 亞 普 若 夫 函 數...36 4.2.2 使 用 非 共 同 李 亞 普 若 夫 函 數 ...38 4.2.3 非 共 同 李 亞 普 若 夫 函 數 結 合 寬 鬆 矩 陣 變 數 ...41 五、模 糊 系 統 電 腦 模 擬...46 5.1 例 子   1 ...46 5.2 例 子   2 ...51 5.3 例 子   3...58 六、結 論 與 未 來 方 向 ... 64 6.1 結 論 ...64 6.2 未 來 方 向 ...65 參 考 文 獻 ... 66

    [1] T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang, “Model construction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 9, no. 4, pp. 525–538, Aug. 2001.
    [2] H. Wang, J. Li, D. Niemann, and K. Tanaka, “T-S fuzzy model with linear rule consequence and PDC controller: a universal framework for nonlinear control systems,” in Proc. of 18th Int’l Conf. of the North American Fuzzy Information Processing Society, 2000.
    [3] K. Tanaka, T. Taniguchi, and H. Wang, “Generalized Takagi-Sugeno fuzzy systems: rule reduction and robust control,” in Proc. of 7th IEEE Conf. on Fuzzy Systems, 2000.
    [4] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear systems:
    stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 14–23, Feb.
    1996.
    [5] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality
    Approach. New York, NY: John Wiley & Sons, Inc., 2001.
    [6] K. Tanaka, T. Ikeda, and H. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6, no. 2, pp. 250–265, May 1998.
    [7] J. Lo and M. Lin, “Observer-based robust H∞ control for fuzzy systems using two-step procedure,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, pp. 350–359, Jun. 2004.
    [8] ——, “Robust H∞ nonlinear control via fuzzy static output feedback,” IEEE Trans. Cir- cuits and Syst. I: Fundamental Theory and Applications, vol. 50, no. 11, pp. 1494–1502, Nov. 2003.
    [9] M. de Oliveira, J. Bernussou, and J. Geromel, “A new discrete-time robust stability con- dition,” Syst. & Contr. Lett., vol. 37, pp. 261–265, 1999.
    66
    [10] D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou, “A new robust D-stability condition for real convex polytopic uncertainty,” Syst. & Contr. Lett., vol. 40, pp. 21–23,
    2000.
    [11] J. Geromel and M. de Oliveira, “H2 and H∞ robust filtering for convex bounded uncertain system,” IEEE Trans. Automatic Control, vol. 46, no. 1, pp. 100–107, Jan. 2001.
    [12] M. de Oliveira, J. Geromel, and J. Bernussou, “Extended H2 and H∞ norm characteriza- tions and controller parameterizations for discrete-time systems,” Int. J. Contr., vol. 75, no. 9, pp. 666–679, 2002.
    [13] R. Oliveira and P. Peres, “LMI conditions for robust stability analysis based on polynomi- ally parameter-dependent Lyapunov functions,” Syst. & Contr. Lett., vol. 55, pp. 52–61,
    2006.
    [14] ——, “Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations,” IEEE Trans. Automatic Control, vol. 52, no. 7, pp. 1334–1340, Jul. 2007.
    [15] ——, “LMI conditions for the existence of polynomially parameter-dependent Lyapunov functions assuring robust stability,” in Proc. of 44th IEEE Conf. on Deci and Contr, Seville, Spain, Dec. 2005, pp. 1660–1665.
    [16] V. Montagner, R. Oliveira, P. Peres, and P.-A. Bliman, “Linear matrix inequality charac- terization for H∞ and H2 guaranteed cost gain-scheduling quadratic stabilization of linear time-varying polytopic systems,” IET Control Theory & Appl., vol. 1, no. 6, pp. 1726–1735,
    2007.
    [17] V. Montagner, R. Oliveira, and P. Peres, “Necessary and sufficient LMI conditions to compute quadratically stabilizing state feedback controller for Takagi-sugeno systems,” in Proc. of the 2007 American Control Conference, Jul. 2007, pp. 4059–4064.
    [18] ——, “Convergent LMI relaxations for quadratic stabilization and H∞ control of Takagi- sugeno fuzzy systems,” IEEE Trans. Fuzzy Systems, no. 4, pp. 863–873, Aug. 2009.
    [19] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534, Oct. 2000.
    [20] C. Fang, Y. Liu, S. Kau, L. Hong, and C. Lee, “A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 14, no. 3, pp. 386–397, Jun. 2006.
    67
    [21] X. Liu and Q. Zhang, “New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, pp. 1571–1582, 2003.
    [22] B. Ding, H. Sun, and P. Yang, “Further studies on LMI-based relaxed stabilization con- ditions for nonlinear systems in Takagi-sugeno’s form,” Automatica, vol. 43, pp. 503–508,
    2006.
    [23] B. Ding and B. Huang, “Reformulation of LMI-based stabilization conditions for non-linear systems in Takagi-Sugeno’s form,” Int’l J. of Systems Science, vol. 39, no. 5, pp. 487–496,
    2008.
    [24] T. Guerra and L. Vermeiren, “Conditions for non quadratic stabilization of discrete fuzzy models,” in 2001 IFAC Conference, 2001.
    [25] ——, “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form,” Automatica, vol. 40, pp. 823–829, 2004.
    [26] J. Wan and J. Lo, “LMI relaxations for nonlinear fuzzy control systems via homoge- neous polynomials,” in The 2008 IEEE World Congress on Computational Intelligence, FUZZ2008, Hong Kong, CN, Jun. 2008, pp. 134–140.
    [27] A. Sala and C. Arin˜o, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem,” Fuzzy Set and Systems, vol. 158, pp. 2671–2686, 2007.
    [28] H. Zhang and X. Xie, “Relaxed Stablity Conditions for Continuous-Time T-S Fuzzy- Control Systems Via Augmented Multi-Indexed Matrix Approach,” pp. 478–492, June
    2011.
    [29] J. Lo and C. Tsai, “LMI relaxations for non-quadratic discrete stabilization via Polya theorem,” in Proc. of the 48th IEEE Conference on Decision and Control, Shanghai,CH, Dec. 2009, pp. 7430–7435.
    [30] V. Montagner, R. Oliveira, T. Calliero, R. Borges, P. Peres, and C. Prieur, “Robust absolute stability and nonlinear state feedback stabilization based on polynomial Lur’e functions,” Nonlinear Analysis, vol. 70, pp. 1803–1812, 2009.
    [31] I. Abdelmalek, N. Gol’ea, and M. Hadjili, “A new fuzzy Lyapunov approach to non- quadratic stabilization of Takagi-Sugeno fuzzy models,” Int. J. Appl. Math. Comput. Sci, vol. 17, no. 1, pp. 39–51, Feb. 2007.

    QR CODE
    :::