| 研究生: |
賴家祥 Chia-Hsiang Lai |
|---|---|
| 論文名稱: |
BP016W-新型食道鱗狀上皮細胞癌候選藥物 BP016W- as a Novel Candidate Drug for Esophageal squamous Cell Carcinoma Therapy |
| 指導教授: | 蘇立仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 系統生物與生物資訊研究所 Graduate Institute of Systems Biology and Bioinformatics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 食道鱗狀上皮細胞癌 、天然藥物 、轉錄子定序 、蛋白質質譜 、生物資訊 、降血脂藥物 、細胞程序性凋 |
| 外文關鍵詞: | Esophageal squamous cell carcinoma, Traditional Chinese Medicine, Transcriptome sequencing, Protein mass, Bioinformatics, Hypolipidemic drug, Apoptosis |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
食道鱗狀上皮細胞癌是一個致命的癌症,它有高死亡率及嚴重的化療副作用。因此,我們決定找出新的食道癌治療藥物。我們首先分析食道鱗狀上皮細胞癌患者之轉錄子定序及基因微陣列晶片資料,並從中篩選了727個轉錄子(363上調轉錄子及364下調轉錄子)。接著,使用基因分析工具及藥物預測工具發現到它們的結果與降血脂藥物相關。近年來許多文獻以及臨床研究顯示天然藥物可以用於治療癌症,它有著低毒性並且可以抗發炎及抑制癌症細胞的生長。於是,我們搜尋有關降血脂的天然藥物並且從實驗中看到BP016W可以抑制癌細胞的生長。我們利用流式細胞儀看到BP016W抑制癌細胞的方式是促使癌細胞走向程序性凋亡路徑,接著我們使用西方墨點法證明細胞程序性凋亡蛋白被啟動。為了探討更全面的基因路徑表現以及蛋白質體學代謝表現,我們使用轉錄子次世代定序與蛋白質質譜儀來觀察癌細胞治療前後基因及蛋白質表現量差異。從高通量數據我們發現BP016W治療癌細胞可以抑制脂肪代謝及細胞生長路徑,這樣的結果表示我們之前的預測方法是正確的。從過去的文獻指出抑制脂肪代謝可以促使細胞走向程序性凋亡。所以,我們認為BP016W可以當作新的食道癌治療後選藥物。
Esophageal squamous cell carcinoma (ESCC) is one of the most common lethal tumors in the world. It has low cure rate and has serious side effects of chemotherapy. We analyzed 15 patients’ transcriptome sequencing and microarray data selecting 727 transcripts (363 up- and 364 down-regulated) significant to the ESCC, finally. Then we put these signatures into LINCScloud database and the results indicated that hypolipidemic related drugs might be a novel approach for ESCC therapy. Traditional Chinese medicines (TCMs) originated in ancient China and has evolved over thousands of years. Many previous studies have indicated these bioactive natural products can inhibit the interaction, promotion, and progression of carcinogenesis in human cancer cells, and have low toxicity. So, the old book about the TCM was found that there were 4 herbs which related to our prediction. In the study, we screened 4 TCMs and found that BP016W, one of the families of Nelumbo, shows strong growth inhibition toward the ESCC cell line CE81T, thus was chosen for further study. Our western blotting and flow cytometry data both confirmed the term of apoptosis. The protein mass and transcriptome sequencing data also showed that the cholesterol was inhibited and could affect the mitochondria to cause the cell to be apoptosis. Eventually, we think that BP016W is a novel candidate for ESCC therapy.
1. 衛生福利部. 民國105年主要死因分析. 2017; Available from: https://www.mohw.gov.tw/cp-16-33598-1.html.
2. TORRE, Lindsey A., et al. Global cancer statistics, 2012. CA: a cancer journal for clinicians, 2015, 65.2: 87-108.
3. SHERMAN, Brad T., et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 2009, 4.1: 44-57.
4. EDGAR, Ron; DOMRACHEV, Michael; LASH, Alex E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic acids research, 2002, 30.1: 207-210.
5. DOMON, Bruno; AEBERSOLD, Ruedi. Mass spectrometry and protein analysis. science, 2006, 312.5771: 212-217.
6. ASHBURNER, Michael, et al. Gene Ontology: tool for the unification of biology. Nature genetics, 2000, 25.1: 25-29.
7. LIU, Chenglin, et al. Compound signature detection on LINCS L1000 big data. Molecular BioSystems, 2015, 11.3: 714-722.
8. HUANG, Chunfa; FRETER, Carl. Lipid metabolism, apoptosis and cancer therapy. International journal of molecular sciences, 2015, 16.1: 924-949.
9. THIBAULT, Alain, et al. Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clinical Cancer Research, 1996, 2.3: 483-491.
10. SINGH, Siddharth, et al. Statins are associated with reduced risk of esophageal cancer, particularly in patients with Barrett's esophagus: a systematic review and meta-analysis. Clinical Gastroenterology and Hepatology, 2013, 11.6: 620-629.
11. LI-WEBER, Min. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer letters, 2013, 332.2: 304-312.
12. FU, Junjie, et al. Discovery of gene regulation pattern in lung cancer by gene expression profiling using human tissues. Genomics data, 2015, 3: 112-115.
13. KIM, Hyun-Joong, et al. Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics. Biosensors and Bioelectronics, 2008, 24.2: 238-246.
14. TRAPNELL, Cole, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols, 2012, 7.3: 562-578.
15. COX, Jurgen, et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of proteome research, 2011, 10.4: 1794-1805.
16. LEONE, Gemma, et al. Development of liposomal formulations to potentiate natural lovastatin inhibitory activity towards 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase. Journal of Drug Delivery Science and Technology, 2018, 43: 107-112.
17. ELF, Shannon E.; CHEN, Jing. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120.6: 774-780.
18. DESCHNER, Eleaner; LIPKIN, Martin. Proliferation and differentiation of gastrointestinal cells in relation to therapy. Medical Clinics of North America, 1971, 55.3: 601-612.
19. KOVACEVIC, Zaklina; RICHARDSON, Des R. The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer. Carcinogenesis, 2006, 27.12: 2355-2366.
20. ANDO, Takuya, et al. Decreased expression of NDRG1 is correlated with tumor progression and poor prognosis in patients with esophageal squamous cell carcinoma. Diseases of the Esophagus, 2006, 19.6: 454-458.
21. HUNTER, Michael, et al. NDRG1 interacts with APO AI and A-II and is a functional candidate for the HDL-C QTL on 8q24. Biochemical and biophysical research communications, 2005, 332.4: 982-992.
22. COLELL, Anna, et al. Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. Journal of Biological Chemistry, 2003, 278.36: 33928-33935.