跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許書元
Shu-yuan Hsu
論文名稱: 光激發有機極化子元件之製作與量測
Manufacturing and measuring of optically pumped organic polariton device
指導教授: 李正中
Cheng-Chung  Lee
張瑞芬
Jui-Fen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 有機極化子微共振腔
外文關鍵詞: organic, polariton, microcavity
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以有機染料分子DEDOC作為強耦合材料,利用旋轉塗佈製作J-aggregate排列之高吸收DEDOC有機薄膜置入金屬-介電質反射鏡共振腔中,研究微共振腔內激子與光子的強耦合發光機制。本論文設計三種不同腔長的共振腔,透過改變空間層的厚度調整共振腔光子模態能量與激子能量於零度角的偏離量(detuning)。由量測三種元件的多角度反射頻譜與光致發光頻譜,證實了偏極子能態的產生與共振腔內強耦合的機制,並量測到與預期相符的偏極子能態之光強分布。


    We use organic dyes DEDOC to be the material of strongly coupling, and spin the high-absorption organic thin film DEDOC with J-aggregate type in a metal-dielectric microcavity to study the mechanism of strong photon-exction coupling.
    We design three microcavity with different thickness of space layer to control the detuning. By measuring the reflective spectrum and photoluminescence spectrum, we prove the mechanism of strong photon-exction coupling in microcavity, and confirm the polariton intensity distribution are in line with expectations.

    目錄 摘要 iv Abstract v 致謝 vi 第一章 緒論 1 1-1研究背景 1 1-2有機材料的近期發展 5 1-3研究動機 8 第二章 理論分析 10 2-1薄膜理論 10 2-1-1單介面之穿透與反射 10 2-1-2.單層膜之穿透與反射 12 2-1-3多層膜之穿透與反射 16 2-1-4斜向入射 17 2-1-5導納軌跡圖與電場分布 18 2-2微共振腔中的色散關係 23 2-3微共振腔的強耦合作用 26 2-4 J-aggrgate排列 29 第三章 實驗架構 31 3-1 製程儀器 31 3-1-1雙電子槍蒸鍍機 31 3-1-2 UV/ozone 33 3-1-3 旋轉塗佈機 34 3-2有機膜製備 34 3-2-1 Layer-by-Layer原理 34 3-2-2 PDAC/DEDOC薄膜製備 36 3-3量測儀器 38 3-3-1 紫外光/可見光光譜儀 38 3-3-2積分球光譜儀 40 3-3-3光致發光量測系統 41 第四章 結果與討論 42 4-1高吸收有機材料DEDOC 42 4-2微共振腔元件之設計 43 4-2-1元件架構 43 4-2-2電場分布與色散頻譜模擬 45 4-3實驗結果與討論 47 第五章 結論與未來展望 53 參考文獻 55

    1. R. Eisberg and R. Resnick, Quantum physics: John Wiley New York
    (1974).
    2. H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton Bose-Einstein condensation," Reviews of Modern Physics, vol. 82, pp. 1489-1537 (2010).
    3. A. Imamog, R. Ram, S. Pau, and Y. Yamamoto, "Nonequilibrium
    condensates and lasers without inversion: Exciton-polariton lasers," Physical Review A, vol. 53, p. 4250 (1996).
    4. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, "Polariton lasing vs. photon lasing in a semiconductor microcavity," Proceedings of the National Academy of Sciences, vol. 100, pp. 15318-15323 (2003).
    5. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, "Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities," Physical review letters, vol. 100, p. 047401 (2008).
    6. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E.Wertz, P. Senellart, J. Bloch, "Polariton light-emitting diode in a GaAs-based microcavity," Physical Review B,vol. 77, p. 113303 (2008).
    7. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, pp.3314-3317 (1992).
    8. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, Le Si Dang, "Bose-Einstein condensation of exciton polaritons," Nature, vol. 443, pp. 409-14 (2006).
    9. M. Kira, S. W. Koch,"Many-body correlations and excitonic effects in semiconductor spectroscopy". Progress in Quantum Electronics 30 (5): 155–296 (2006).
    10. S. Forget and S. Chénais, Organic Solid-state Lasers: Springer (2013).
    11. V. Timofeev and D. Sanvitto, Exciton Polaritons in Microcavities New Frontiers vol. 172: Springer (2012).
    12. D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, pp. 53-55 (1998).
    13. D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, V. M. Agranovich, S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation”, Physical Review B65 (2002).
    14. P. A. Hobson, W. L. Barnes D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity”, Applied Physics Letters vol. 81, 3519 (2002).
    15. D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity”, Physical Review B84 (2011).
    16. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, Ji-Seon Kim, D. G. Lidzey, “Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities”, Advanced Functional Materials vol. 21, 3691-3696 (2011).
    17. L. Mazza, S. K´ena-Cohen, P. Michetti, G. C. La Rocca, ”Microscopic theory of polariton lasing via vibronically assisted scattering”, Physical Review B88, 075321 (2013).
    18. D. M. Coles, A. J. H. M. Meijer, W. C. Tsoi, M. D. B. Charlton, Ji-Seon Kim, D. G. Lidzey, ” A Characterization of the Raman Modes in a J-Aggregate-Forming Dye:A Comparison between Theory and Experiment”, The Journal Of Physical Chemistry, 114, 11920–1192745 (2010).
    19. G. M. Akselrod, E. R. Young, M. S. Bradley, V. Bulovic, “Lasing through a strongly-coupled mode by intra-cavity pumping”, Optics Express vol. 21, 12122-12128 (2013).
    20. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities”, Physical Review Letters, vol. 82, pp. 3316-3319 (1999).
    21. D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity”, Nature Materials 13, 712-719 (2014).
    22. 李正中, 薄膜光學與鍍膜技術. 第七版, 藝軒圖書出版社,新北市 (2012).
    23. C. F. Klingshirn, Semiconductor Optics vol. 3: Springer (2012).
    24. V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors”,
    Physical Review B, vol. 67 (2003).
    25. R. J. Holmes, S. R. Forrest, “Strong exciton–photon coupling in organic materials”, Organic Electronics 8, 77-93 (2007).
    26. F. Wurthner, T. E. Kaiser, and C. R. Saha-Moller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials”, Angewandte Chemie International Edtion, vol. 50, pp. 3376-410 (2011).
    27. F. C. Spano, C. Silva, ”H- and J-Aggregate Behavior in Polymeric Semiconductors”, Annual Reviews of Physical Chemistry, 65:477–500 (2014).
    28. R. Iler, “Multilayers of colloidal particles”, Journal of Colloid and Interface Science, vol. 21, pp. 569-594, (1966).
    29. X. Zhang, H. Chen, and H. Zhang, “Layer-by-layer assembly: from conventional to unconventional methods”, Chemical Communications, pp. 1395-1405, (2007).
    30. M. S. Bradley, J. R. Tischler, V.Bulovic, ”Layer-by-Layer J-Aggregaye Thin Films with a Peak Absorption Constant of 106 cm-1”, Advanced Materials, 17,1881-1886 (2005).
    31. H. Fukumoto and Y. Yonezawa, “Layer-by-layer self-assembly of
    polyelectrolyte and water soluble cyanine dye”, Thin Solid Films,
    vol. 327, pp. 748-751, (1998).

    QR CODE
    :::