跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡孟學
Meng-Shiue Tsai
論文名稱: 疏氟效應及鉑-鉑金屬作用力之超分子凝膠自組裝行為之研究
Investigating of Intermolecular Fluorophobic and Pt-Pt Interactions on Supramolecular Gel Formation
指導教授: 孫世勝
陳銘洲
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 225
中文關鍵詞: 凝膠超分子凝膠疏氟效應自組裝鉑-鉑金屬作用力
外文關鍵詞: gel, supramolecular gel, fluorophobic, self-assembly, Pt-Pt Interactions
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們發展出易形成凝膠的結構,DN143、DX23、DX97、DX101 以及 DX47成功合成出一系列含有碳氟長鏈的有機凝膠片段,並以乙炔蒽、乙炔芘作為主體得到最終的有機凝膠化合物。在形成凝膠能力的測試中發現 DN143、DX23、DX97、DX101以及DX47 在許多有機溶劑中皆可以形成凝膠,而且具有良好的形成凝膠能力。其中 DX97 及 DX101 含有兩價的鉑金屬,發現加入兩價的鉑金屬對形成凝膠也有一定的影響,且會表現出特別的性質。以變溫吸收光譜、放射光譜及不同狀態下的吸收、放射光譜探討其分子間作用力及光物理變化,得知會形成聚集及分子間自組裝主要以J-type aggregation形式進行;利用 1H NMR 了解凝膠分子形成凝膠主要是以分子間的氫鍵、pi-pi 作用力及 C-H•••pi作用力而成。透過TEM和SEM的觀察,其凝膠分子會自組裝排列成纖維結構或球形結構,其中 DN143 可形成螺旋纖維結構、DX97 可形成球形結構。另外,含有兩價的鉑金屬碳氟長鏈凝膠分子 DX97 與 DX101 皆表現出獨特的性質。 DX97 除氧後可在放射光譜中的長波長看見磷光,但 DX101 卻沒有出現磷光的放射峰;DX101 在某些溶液中發生光化學反應形成 photodimer,形成 dimer 後其光物理
    特性會有明顯的改變。


    A series of supramolecular gelators, DN143, DX23, DX97,DX101 and DX47, based on anthracene or pyrene with perfluoroalkyl chain pyridine-2,6-dicarboxamides has been synthesized. All gelators show excellent gelation ability in many organic solvents. We have found that the presence of the perfluoroalkyl chains as well as the Pt(II) metal centers both contribute to the gel formation and have great effects on their resulting physical properties. A variety of spectroscopic methods have been applied to identify the intermolecular interactions upon gel formation and explore the photophysical properties. The primary driving forces for the gel formation are intermolecular hydrogen bonding, aromatic pi-pi, and C-H•••pi interactions. The supramolecular aggregates in these organogels are considered to be the J-type aggregation. SEM and TEM morphologies on the xerogels reveal that the gelators self-assembled into fibers or spheres. Interestingly, helical fiber and sphere-like morphologies were observed for DN143 and DX97. In addition, DX97 and DX101 containing Pt(II) metal centers and perfluoroalkyl chains exhibit unique properties. DX97 exhibit dual emission with both fluorescence at 406 nm and strong phosphorescence at 655 nm. In contrast, DX101 does not show any detectable phosphorescence but only fluorescence at 436 nm. Photocycloaddition product was identified for DX101 in chlorinated solvent under UV irradiation. The mechanism for the observed photochemistry likely involves singlet oxygen and proceeds with
    free-radical pathways.

    中文摘要....................................................I 英文摘要...................................................II 化合物對照表...............................................III 謝誌......................................................IV 目錄.......................................................V 圖目錄....................................................VII 表目錄...................................................XIII 一、緒論....................................................1 1-1 凝膠的定義..............................................1 1-2 凝膠的形成與分類.........................................2 1-2-1 依據來源分類........................................2 1-2-2 依據介質分類........................................2 1-2-3 依據組成與相互作用力分類..............................2 1-3 小分子有機凝膠(LMOGs)...................................4 1-4 小分子有機凝膠的分類......................................5 1-4-1 LMOGs based on hydro- and fluorocarbons, fatty acids and esters..................................5 1-4-2 LMOGs based on saccharides........................7 1-4-3 LMOGs based on syeroids...........................8 1-4-4 LMOGs based on amides.............................9 1-4-5 LMOGs based on aromatic moleclues................13 1-4-6 LMOGs based on metal complexes...................15 1-4-7 LMOGs based on two-component.....................20 1-5 Anthracene and Pyrene containing luminescent LMOGs....20 1-5-1 Anthracene containing luminescent LMOGs..........21 1-5-2 Pyrene containing luminescent LMOGs..............25 1-6 Platinum-acetylide containing LMOGs...................27 1-7 Perfluoroalkanes compounds............................30 1-8 研究動機...............................................34 二、實驗部分................................................36 2-1 分析儀器...............................................36 2-2 實驗藥品...............................................39 2-3 實驗流程...............................................40 三、結果與討論..............................................50 3-1 凝膠分子 DN143、DX23、DX47、DX97、DX101 光物理性質........50 3-2 凝膠分子 DN143、DX23、DX47、DX97、DX101 自組裝行為........57 3-2-1 不同溶劑下形成凝膠能力的測試..........................57 3-2-2 變溫核磁共振.......................................63 3-2-3 變溫 UV-Vis 吸收實驗、變溫放射實驗...................67 3-2-4 稀薄溶液、凝膠、薄膜狀態的吸收及放射實驗................73 3-2-5 分子聚集形貌之研究..................................83 3-3 凝膠分子 DX101 的 photocycloaddition 實驗...............88 四、結論...................................................91 五、實驗合成步驟.............................................93 六、參考資料...............................................116 附錄.....................................................123

    1. Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133.
    2. Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821.
    3. Weiss, R.G.; Terech, P.; eds. Molecular Gels. Materials with Self-Assembled Fibrillar Networks, Springer, Dordrecht, The Netherlands, 2006.
    4. von Lipowitz, A. Liebigs Ann. Chem. Pharm. 1841, 38, 348.
    5. Graham, T. Phil. Trans. Roy. Soc. 1861, 151, 183.
    6. Lloyd, D. J. The problem of gel structure, In Colloid Chemistry, Alexander, J.; ed. The Chemical Catalogue Company, New York, USA, 1926, 767.
    7. Flory, J. P. Faraday Discuss. Chem. Soc. 1974, 57, 7.
    8. Gelbart, W. M.; Ben-Shaul, A. J. Phys. Chem. 1996, 100, 13169.
    9. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
    10. George, M.; Weiss, R. G. Low Molecular-Mass Orange Gelators, In Molecular Gels. Materials with Self-Assembled Fibrillar Networks, Weiss, R. G.; Terech, P., eds., Springer, Dordrecht, The Netherlands, 2006, 449.
    11. Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Chem. Soc. Rev. 2008, 37, 109.
    12. Abdallah, D. J.; Weiss, R. G. Langumir 2000, 16, 352.
    13. de Loos, M. Hydrogen Bonded Low Molecular Weight Gelators Structure-Property Relations, Ph.D. thesis, Universityof Groningen, 2005.
    14. Atwood J. L.; Steed, J. W.; eds. Organic Nanostructures, 111, Wiley-VCH, Weinheim, 2008.
    15. Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Chem. Rev. 2010, 110, 1960.
    16. Maity, G. C. J. Phys. Sci. 2007, 11, 156.
    17. Abdallah, D. J.; Sirchio, S. A.; Weiss, R. G. Langumir 2000, 16, 7558.
    18. Twieg, R. J.; Russell, T. P.; Siemens, R.; Rabolt, J. F. Macromolecules 1985, 18, 1361.
    19. Ku, C. Y.; Nostro, P. L.; Chen, S. H. J. Phys. Chem. B. 1997, 101, 908.
    20. Polishuk, A. T. J. Am. Soc. Lubn. Eng. 1977, 33, 133.
    21. Knight, D. W.; Morgan, I. R. Tetrahedron Lett. 2009, 50, 6610.
    22. Hafkamp, R. J. H.; Feiters, M. C.; Nolte, R. J. M. J. Org. Chem. 1999, 64, 412.
    23. John, G.; Gung, J. H.; Masuda, M.; Shimizu, T. Langmuir 2004, 20, 2060.
    24. Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328.
    25. Friggeri, A.; Gronwald, O.; van Bommel, K. J. C.; Shinkai, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 10754.
    26. Bujanowski, V. J.; Kastoulis, D. E.; Ziemelis, M. J. J. Mater. Chem. 1994, 8, 1181.
    27. Lu, L.; Cocker, M.; Bachman, R. E.; Weiss, R. G. Langmuir 2000, 16, 20.
    28. Lin, Y.; Weiss R. G. Macromolecules 1987, 20, 414.
    29. Mukkamala, R.; Weiss, R. G. Langmuir 1996, 12, 1474.
    30. Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 6664.
    31. Murate, K.; Aoki, M. Nishi, T.; Ikeda, A.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1991, 24, 1715.
    32. Tian, H. J.; Inoue, K.; Yoza, K.; Ishi-I, T.; Shinkai, S. Chem. Lett. 1998, 27, 871.
    33. Geiger, C.; Stanescu, M.; Chen, L.; Whetten, D. G. Langmuir 1999, 15, 2241.
    34. Beginn, U.; Sheiko, S.; Moeller, M. Macromol. Chem. Phys. 2000, 201, 1008.
    35. Hashimoto, M.; Ujiie, S.; Mori, A. Adv. Mater. 2003, 15, 797.
    36. Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H. Angew. Chem. Int. Ed. Engl. 1996, 35, 1949.
    37. Sumiyoshi, T.; Nishimura, K.; Nakano, M.; Handa, T.; Miwa, Y.; Tomioka, K. J. Am. Chem. Soc. 2003, 125, 12137.
    38. Yasuda, Y.; Iishi, E.; Inada, H.; Chirota, Y. Chem. Lett. 1996, 25, 575.
    39. Hanabusa, K.; Kawakami A.; Kimura, M.; Shirai, H. Chem. Lett. 1997, 26, 191.
    40. Ikeda, M.; Takeuchi, M.; Shinkai S. Chem. Commun. 2003, 1354.
    41. Würthner, F.; Hanke, B.; Lyysetska, M.; Lambright, G.; Harms, G. S. Org. Lett. 2005, 7, 967.
    42. Würthner, F.; Chen, Z.; Dehm, V.; Stepanenko, V. Chem. Commun. 2006, 1188.
    43. Li, X. Q.; Stepanenko, V.; Chen, Z.; Prins, P.; Siebbeles, L. D. A.; Würthner, F. Chem. Commun. 2006, 3871.
    44. Ajayagosh, A.; George, S. J. J. Am. Chem. Soc. 2001, 123, 5148.
    45. Ishi-I, T.; Hirayama, T.; Murakami, K.; Tashiro, H.; Thiemann, T.; Kubo, K.; Mori, A.; Yamasaki, S.; Akao, T.; Tsuboyama, A.; Mukaide, T.; Ueno, K.; Mataka, S. Langmuir 2005, 21, 1261.
    46. Strassert, C. A.; Chien, C. H.; Lopez, M. D. G.; Kourkoulos, D.; Hertel, D.; Meerholz, K.; Cola, L. D. Angew. Chem. Int. Ed. 2011, 50, 946.
    47. de Hatten, X.; Bell, N.; Yufa, N.; Christmann, G.; Nitschke, J. R. J. Am. Chem. Soc. 2011, 133, 3158.
    48. Zhang, J. J.; Lu, W.; Sun, R. W. Y.; Che, C. M. Angew. Chem. Int. Ed. 2012, 51, 4882.
    49. Zhang, S.; Yang, S. ; Lan, J.; Tang, Y.; Xue, Y.; You, J. J. Am. Chem. Soc. 2009, 131, 1689.
    50. Beck, J. B.; Rowan, S. J. J. Am. Chem. Soc. 2003, 125, 13922.
    51. Kishimura, A.; Yamashita, T.; Aida, T. J. Am. Chem. Soc. 2005, 127, 179.
    52. Kawano, S.; Fujita, N.; Shikai, S. J. Am. Chem. Soc. 2004, 126, 8592.
    53. Liu, J.; He, P.; Yan, J.; Fang, X.; Peng, J.; Liu, K.; Fang, Y. Adv. Mater. 2008, 20, 2508.
    54. Lam, S. T.; Yam, V. W. Chem. Eur. J. 2010, 16, 11588.
    55. Chang, K. C.; Lin, J. L.; Shen, Y. T.; Hung, C. Y.; Chen, C. Y.; Sun, S. S. Chem. Eur. J. 2012, 18, 1312.
    56. Babu, P.; Sangeetha, N. M.; Vijaykumar, P.; Maitra, U.; Rissanen, K.; Raju, A. R. Chem. Eur. J. 2003, 9, 1922.
    57. Tanaka, S.; Shirakawa, M.; Kaneko, K.; Takeuchi, M.; Shinkai, S. Langmuir 2005, 21, 2163.
    58. Kobayashi, Y.; Takashima, Y,; Hashidzume, A.; Yamaguchi, H.; Harada, A. Sci. Rep. 2013, 3, 1.
    59. Engeelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science 1999, 284, 785.
    60. Lehn, J. M.; Mascal, M.; Decian, A.; Fischer, J. J. Chem. Soc., Chem. Commun. 1990, 479.
    61. Ajayaghosh, A.; Varghese, R.; Praveen, V. K.; Mahesh, S. Angew. Chem. Int. Ed. 2006, 45, 3261.
    62. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491.
    63. Ajayaghosh, A.; Praveen, V. K. Acc. Chem. Res. 2007, 40, 644.
    64. Kartha, K. K.; Babu, S. S.; Srinivasan, S.; Ajayaghosh S. J. Am. Chem. Soc. 2012, 134, 4834.
    65. Brotin, T.; Utermöhlen, R.; Fages, F.; Bouas-Laurent, H.; Desvergne, J. P. J. Chem. Soc., Chem. Commun. 1991, 416.
    66. Pozzo, J. L.; Clavier, G. M.; Desvergne, J. P. J. Mater. Chem. 1998, 8, 2575.
    67. Terch, P.; Meerschaut, D.; Desvergne, J. P. J. Colloid and Interface Science, 2003, 261, 441.
    68. Wang, C.; Zhang, D.; Wiang, J.; Zhu, D. Langmuir 2007, 23, 9195.
    69. Dawn, A.; Shiraki, T.; Ichikawa, H.; Takada, A.; Takahashi, Y.; Tsuchiya, Y.; Lien, L. T. N.; Shinkai, S. J. Am. Chem. Soc. 2012, 134, 2161.
    70. Rajamalli, P.; Prasad, E. Org. Lett. 2011, 13, 3714.
    71. Förster, T.; Kasper, K. Z. Electrochem. 1955, 59, 976.
    72. Okamoto, A.; Kanatani, K.; Saito, I. J. Am. Chem. Soc. 2004, 126, 4820.
    73. Jia, W. L.; McCormick, T.; Liu, Q.-D.; Fukutani, H.; Motala, M.; Wang, R.-Y.; Tao, Y.; Wang, S. J. Mater. Chem. 2004, 14, 3344.
    74. Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H.-W.; Hudson, S. D.; Duan, H. Nature 2002, 419, 384.
    75. Bernhardt, S.; Kastler, M.; Enkelmann, V.; Baumgarten, M.; Müllen, K. Chem. Eur. J. 2006, 12, 6117.
    76. Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K. Chem. Eur. J. 2006, 12, 824.
    77. Rajamalli, P.; Prasad, E. Soft Matter 2012, 8, 8896.
    78. Yan, N.; Xu, Z.; Diehn, K. K.; Raghavan, S. R.; Fang, Y.; Weiss, R. G. Langmuir 2013, 29, 793.
    79. Diring, S.; Camerel, F.; Donnio, B.; Dintzer, T.; Toffanin, S.; Capelli, R.; Muccini, M.; Ziessel, R. J. Am. Chem. Soc. 2009, 131, 18177.
    80. Ghosh, K.; Yang, H. B.; Northrop, B. H.; Lyndon, M. M.; Zheng, Y. R.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 5320.
    81. Ghosh, K.; Hu, J.; White, H. S.; Stang, P. J. J. Am. Chem. Soc. 2009, 313, 6695.
    82. Lu, W.; Mi, B. X.; Chan, M. C. W.; Hui, Z.; Che, C. M.; Zhu, N.; Lee, S. T. J. Am. Chem. Soc. 2004, 126, 4958.
    83. Tam, A. Y. Y.; Wong, K. M. C.; Yam, V. W. W. J. Am. Chem. Soc. 2009, 131, 6253.
    84. Camerel, F.; Ziessel, R.; Donnio, B.; Bourgogne, C.; Guillon, D.; Schmutz, M.; Iacovita, C.; Bucher, J. P. Angew. Chem. Int. Ed. 2007, 46, 2659.
    85. Cardolaccia, T.; Li, Y.; Schanze, K. S. J. Am. Chem. Soc. 2008, 130, 2535.
    86. Xu, X. D.; Zhang, J.; Chen, L. J.; Zhao, X. L.; Wang, D. X.; Yang, H. B. Chem. Eur. J. 2012, 18, 1659.
    87. Zhang, J.; Xu, X. D.; Chen, L. J.; Luo, Q.; Wu, N. W.; Zhao, X. L. Organometallics. 2011, 30, 4032.
    88. Xu, X. D.; Zhang, J.; Yu, X.; Chen, L. j.; Wang, D. X.; Yi, T.; Li, F.; Yang, H. B. Chem. Eur. J. 2012, 18, 16000.
    89. Percec, V.; Johansson G.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1996, 118, 9855.
    90. Tomalia, D. A. Nat. Mater. 2003, 2, 711.
    91. Young, C. L. Trans. Faraday Soc. 1969, 65, 2639.
    92. Oda, R.; Huc, I.; Danino, D.; Talmon, Y. Langmuir 2000, 16, 9759.
    93. Twieg, R. J.; Russell, T. P.; Siemens R.; Rabolt, J. F. Macromolecules 1986, 18, 1361.
    94. George, M.; Snyder, S. L.; Terech, P.; Glinka C. J.; Weiss, R. G. J. Am. Chem. Soc. 2003, 125, 10275.
    95. George, M.; Snyder, S. L.; Terech, P.; Weiss, R. G. Langmuir 2005, 21, 9970.
    96. Yamanaka, M.; Sada, K.; Miyata, M.; Hanabusa, K.; Nakano, K. Chem. Commun. 2006, 2248.
    97. Banerjee, S.; Vidya, V. M.; Savyasachi, A. J.; Maitra, U. J. Mater. Chem. 2011, 21, 14693.
    98. Banerjee, S.; Das, R. K.; Terech, P.; de Geyer, A.; Aymonier, C.; Loppinet-Serani, A.; Raffy, G.; Maitra, U.; Guerzo, A. D.; Devergne, J. P. J. Mater. Chem. C. 2013, 1, 3305.
    99. Tsou, C. C.; Sun, S. S. Org. Lett. 2006, 8, 387.
    100. Amergo, W. L. F., Chain, C L.L. Purification of Laboratory Chemicals.
    Butterworth Heinemann
    101. Xiao, Q.; Ranasinghe, R. T.; Tang, A. P. M.; Brown, T. Tetrahedron 2007, 63,
    3483.
    102. Sharif, M., Reimann, S.; Wittler, K.; Knöpke, L. R.; Surkus, A. E.; Roth, C.;
    Villinger, A.; Ludwig, R.; Langer, P. Eur. J. Org. Chem. 2011, 27, 5261.
    103. Rivera, E.; Belletˆete, M.; Zhu, X. X.; Durocher, G.; Giasson, R. Polymer 2002,
    43, 5059.
    104. Hissler, M.; Harriman, A.; Khatyr, A.; Ziessel, R. Chem. Eur. J. 1999, 5, 3366.
    105. Leroy-Lhez, S.; Fages, F. Eur. J. Org. Chem. 2005, 13, 2684.
    106. Ji, S.; Yang, J.; Yang, Q.; Liu, S.; Chen, M.; Zhao, J. J. Org. Chem. 2009, 74,
    4855.
    107. Horváth, G.; Rusa, C.; Köntös, Z.; Gerencsér, J.; Huszthy, P. Synthetic. Communication 1999, 3719.
    108. Pryor, K. E.; Shipps, G. W.; Skyler, D. A.; Rebek, J. Tetrahedron 1998, 54, 4107.
    109. Das, K.; Nakade, H.; Penelle, J.; Rotello, V. M. Macromolecules 2004, 37, 310.
    110. Tao, C. H.; Zhu, N.; Yam, V. W. W. Chem. Eur. J. 2005, 11, 1647.
    111. Brouwer, A. M. Pure Appl. Chem. 2011, 83, 2213.
    112. Palmans, A. R.; Titulaer, B.; Vekemans, J. A.; Meijer. E. W. J. Am. Chem. Soc. 2005, 127, 5490.

    QR CODE
    :::