跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳偉琳
Wei-lin Chen
論文名稱: 國小學生對統計圖理解層次之研究
The Study of Elementary School Students'' Understandingon the Levels of Graph Comprehension
指導教授: 柯華葳
Hwa-wei Ko
口試委員:
學位類別: 碩士
Master
系所名稱: 文學院 - 學習與教學研究所
Graduate Institute of Learning and Instruction
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 國小學生統計圖統計圖理解層次數學能力
外文關鍵詞: elementary school students, statistical graphic, mathematical ability
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討國小六年級學生在理解統計圖所需的報讀、比較大小、計算、推論和摘要等五項能力的表現情形,特別是數學課程未進行教學的推論和摘要能力,並檢視高、低數學能力的學生在此兩項能力題目的理解表現是否有差異;統計圖理解層次分別為報讀資料、比較資料和解讀資料層次,本研究根據各理解層次的定義共細分出五項所需的能力,分別為屬於報讀資料層次的報讀能力、比較資料層次中的比較大小和計算兩項能力,以及解讀資料層次所需的推論和摘要兩項能力。為了解六年級學生在五項能力上的理解表現,本研究自行設計能夠反映五項能力內涵的統計圖理解層次測驗,並增加檢視學生是否能夠辨識統計圖的基本構成要素例如橫/縱軸的識圖題,即每個統計圖題組皆包含前述六種類型的題目,每人需回答七個題組,所採用的統計圖類型為學生在學校課程可學習到的長條圖、折線圖和圓形圖,統計圖主題包含社會課本單元中有採用統計圖的主題和日常生活中常見以統計圖呈現數據資料的議題。此外,採用學生的在校段考數學成績作為數學能力的依據指標。
    本研究發現,六年級學生在推論和摘要的表現是五項能力之中表現較弱的項目,其中,數學能力會影響學生在此兩項能力題目的表現,且學生在推論和摘要的表現有顯著差異。此外,影響摘要表現的因素包含學生的數學能力、統計圖主題內容及統計圖的複雜程度;根據本研究結果建議,在教學上,教師可提供目前學校課程未進行教學的推論和摘要能力之課程,藉由加強學生在此兩項能力的不足,可幫助學生具備從統計圖資料中獲取意義的能力。


    This study examined sixth grade students’ performance on the five abilities of graph comprehension, which include reading, comparison, calculation, reasoning and summarization. This study especially concerns with the ability of reasoning and summarization on mathematics curriculums that were not taught in class. In addition,
    this study also interested in whether mathematical ability will influence the performance on graph comprehension. Five abilities above-mentioned are subdivisions from three levels of graph comprehension (reading, comparing, and
    interpreting data). The ability of reading is from the level of reading data. Comparison and calculation are from the level of comparing data, whereas reasoning and
    summarization came from the level of interpreting data. Assessment test used in this study is structured based on three types of statistical graphics (i.e., bar chart, line chart and pie chart) and contained five types of questions, which are formulated in accordance to the definitions of five abilities. Every student has to answer seven questions. The basis of students’ mathematical ability is determined on students’monthly mathematical exams.
    Following results are found: Students’ performance on reasoning and summarization are significantly lower than the other three abilities. In addition, mathematical ability influenes the performance of these two abilities. From these results, one suggests that mathematics teachers should teach students more about reasoning and summarization. Because these two abilities help the students to derive meanings out of statistical graphics.

    第一章 緒論..............................................................................................................1 第一節 研究背景與動機......................................................................................1 第二節 研究目的與問題......................................................................................5 第三節 名詞釋義..................................................................................................6 第四節 研究限制..................................................................................................7 第二章 文獻探討.....................................................................................................8 第一節 理解統計圖及相關研究..........................................................................8 第二節 統計圖的理解層次................................................................................12 第三節 影響理解統計圖的因素........................................................................18 第四節 國內數學課程中的統計圖教學............................................................21 第五節 小結........................................................................................................26 第三章 研究方法...................................................................................................27 第一節 統計圖理解層次測驗............................................................................27 第四章 結果分析...................................................................................................36 第一節 高、低數學能力對推論與摘要表現之影響........................................37 第二節 學生在推論和摘要的表現....................................................................39 第五章 綜合討論...................................................................................................45 參考文獻...................................................................................................................49 附錄一 統計圖理解層次測驗............................................................................53 附錄二 評分標準................................................................................................68

    邱皓政(民 99)。量化研究與統計分析(第五版)。台北:五南。
    陳幸玫、陳忠信(民100)。北市、新北市國小六年級學童對社會教科書統計圖
    的理解能力。教育資料與研究雙月刊,98,125-154。
    教育部(2008)。97 年國民中小學九年一貫課程綱要-數學學習領域。2011 年
    11 月14 日,取自http://www.edu.tw/EJE/content.aspx?site_content_sn=15326
    Berg, C., & Smith, P. (1994). Assessing students’ abilities to construct and interpret
    Line Graphs: Disparities between Multiple-Choice and Free-Response
    Instruments. Science Education, 78(6), 527-554.
    Bertin, J. (1983). Semiology of graphics (2nd ed., W. J. Berg, Trans.). Madison:
    University of Wisconsin Press.
    Bright, G.W., & Friel, S.N. (1998). Graphical representations: Helping students
    interpret data. In S. P. Lajoie (Ed.), Reflections on statistics: Learning, teaching,
    and assessment in grades K-12 (pp. 275-295). Mahwah, NJ: Erlbaum.
    Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual
    processes in graph comprehension. Journal of Experimental Psychology, 4,
    75–100.
    Carswell, C. M. (1992). Choosing specifiers: An evaluation of the basic tasks model
    of graphical perception. Human Factors, 34, 535-554.
    Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory,
    experimentation, and application to the development of graphical methods.
    Journal of the American Statistical Association, 77, 541–547.
    Cleveland,W. S., & McGill, R. (1985). Graphical perception and graphical methods
    for analyzing scientific data. Science, 229, 828–833.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Second
    Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Curcio, F. R. (1987). Comprehension of mathematical relationships expressed in
    graphs. Journal for Research in Mathematics Education, 18, 382-393.
    Curcio, F. R. (1989). Developing graph comprehension. Reston, VA: National
    Council of Teachers of Mathematics.
    Curcio, F. R., & Artz, A. F. (1997). Assessing students’ statistical problem-solving
    behaviors in a small-group setting. In I. Gal & J. B. Garfield (Eds.), The
    assessment challenge in statistics education (pp. 123–138). Amsterdam: IOS
    Press.
    Dossey, J. A., Mullis, I. V. S., & Jones, C. O. (1993). Can students do mathematical
    Problem solving? Washington, DC: U.S. Department of Education.
    Friel, S. N., Curcio, F. R., & Bright, G.W. (2001). Making sense of graphs: Critical
    factors in influencing comprehension and instructional implications. Journal for
    Research in Mathematics Education, 32, 124-158.
    Gal, I. (1993). Reaching out: Some issues and dilemmas in expanding statistics
    education. In L. Pereira-Mendoza(Ed.), Introducing data-analysis in the schools:
    Who should teach it and how? (pp. 189-203). Voorburg, The Netherlands:
    International Statistics Institute.
    Gal, I. (1998). Assessing statistical knowledge as it relates to students'' interpretation
    of data. In S. P. Lajoie (Ed.), Reflections on statistics: Learning, teaching, and
    assessment in grades K-12 (pp. 275-295). Mahwah, NJ: Erlbaum.
    Gattis, M., & Holyoak, K. J. (1996). Mapping conceptual to spatial relations in visual
    reasoning. Journal of Experimental Psychology: Learning, Memory, and
    Cognition, 22(1), 231-239.
    Gillian, D. J., & Lewis, R. (1994). A componential model of human interaction with
    graphs: 1. Linear regression modeling. Human Factors, 36, 419–440.
    Graesser, A. C., Swamer, S. S., Baggett, W. B., & Sell, M. A. (1996). New models of
    deep comprehension. In B. K. Britton & A. C. Graesser (Eds.), Models of
    understanding text (pp. 1-32). Mahwah, NJ: Erlbaum.
    Jolliffe, F. R. (1991). Assessment of the understanding of statistical concepts. In D.
    Vere-Jones (Ed.), Proceedings of the third international conference on teaching
    statistics (Vol. 1, pp. 461-466). Voorburg, The Netherlands: International
    Statistical Institute.
    Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive
    Psychology, 3, 185–225.
    Kosslyn, S. M. (1994). Elements of graph design. New York: W. H. Freeman
    Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten
    thousand words. Cognitive Science, 11(1), 65-100.
    Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and
    graphing: Tasks, learning, and teaching. Review of Educational Research, 60,
    1-64.
    Legge, G. E., Gu, Y., & Luebker, A. (1989). Efficiency of graphical perception.
    Perception and Psychophysics, 46, 365-374.
    Lohse, G. L. (1993). A cognitive model of understanding graphical perception.
    Human-Computer Interaction, 8, 353–388.
    Maichle,U. (1994). Cognitive processes in understanding line graphs. In W.
    Schnotz & R. W. Kulhavy (Eds.), Comprehension of graphics (pp. 207-226).
    New York: Elsevier Science.
    McKnight, C. C. (1990). Critical evaluation of quantitative arguments. In G. Kulm
    (Ed.), Assessing higher order thinking in mathematics (pp. 169-185). Washington,
    DC: American Association for the Advancement of Science.
    Meyer, J., Shinar, D., & Leiser, D. (1997). Multiple factors that determine
    performance with tables and graphs. Human Factors, 39, 268-286.
    Michalis, I. (2005). Graph comprehension of primary school students. In B. Hudson
    & J.Fragner (Eds.), Researching the teaching and learning of mathematics II (pp.
    271-293). Linz, The Austria: Trauner.
    Mosenthal, P. B., & Kirsch, I. S. (1990a). Understanding graphs and charts, Part I.
    Journal of Reading, 33, 371-373.
    Mosenthal, P. B., & Kirsch, I. S. (1990b). Understanding graphs and charts, Part II.
    Journal of Reading, 33, 454-457.
    Pereira-Mendoza, L., & Mellor, J. (1991). Students’ concepts of bar graphs – Some
    preliminary findings. In D. Vere-Jones (Ed.), Proceedings of the third
    international conference on teaching statistics (Vol. 1, pp. 150–157). Voorburg,
    The Netherlands: International Statistical Institute.
    Pinker, S. (1990). A theory of graph comprehension. In R. Frele (Ed.), Artificial
    intelligence and the future of testing (pp. 73–126). Hillsdale, NJ: Erlbaum.
    Preece, J. (1990). Some HCI issues concerned with displaying quantitative
    information graphically. In Gorny, P., & Tauber, M. J. (Eds.), Visualization in
    Human–Computer Interaction. Springer, New York.
    Russell, S. J. (1991). Counting noses and scary things: Children construct their ideas
    about data. In D. Vere-Jones (Ed.), In Proceedings of the third international
    conference on teaching statistics (Vol. 1, pp. 158–164). Voorburg, Netherlands:
    International Statistical Institute.
    Shah, P. (2002). Graph comprehension: The role of format, content, and individual
    differences. In M. Anderson, M., B. Meyer, & P. Olivier. (Eds.), Diagrammatic
    Representation and Reasoning. New York: Springer.
    Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge
    construction: signaling techniques for guiding the process of graph
    comprehension. Journal of Educational Psychology, 91(4), 690-702.
    Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research:
    Implications for instruction. Educational Psychology Review,14(1), 47-69.
    Shaughnessy, J. M., Garfield, J. & Greer, B. (1996). Data Handling. In A. J. Bishop,
    K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International
    Handbook of Mathematics Education (Part 1, pp. 205–237). Dordrecht, The
    Netherlands: Kluwer Academic Pblishers.
    Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic
    reasoning: logic and implementation. Cognitive Science, 19, 97–140.
    Szyjka, S., Mumba, F., & Wise, K. C. (2011). Cognitive and Attitudinal Predictors
    Related to Line Graphing Achievement among Elementary Pre-service Teachers.
    Journal of Science Teacher Education, 22(7), 563-578.
    Tversky, B. (2001). Spatial schemas in depictions. In M. Gattis (Ed.) Spatial schemas
    and abstract thought (pp. 79-111). Cambridge: MIT Press.
    Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New
    York: Academic Press
    Wainer, H. (1992). Understanding graphs and tables. Educational Researcher, 21(1),
    14-23.
    Zawojewski, J. S., & Heckman, D. J. (1997). What do students know about data
    analysis, statistics, and probability? In P. A. Kenney & E. A. Silver (Eds.),
    Results from the Sixth Mathematics Assessment of the National Assessment of
    Educational Progress (pp. 195-223). Reston, VA: National Council of Teachers
    of Mathematics.

    QR CODE
    :::