跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江博仁
Bo-Ren Jiang
論文名稱: 矽離子佈植於p型氮化鎵之特性研究
Investigation of Si-implanted p-type GaN
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 90
語文別: 中文
論文頁數: 88
中文關鍵詞: 氮化鎵離子佈植
外文關鍵詞: implantation, GaN
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的實驗是研究矽離子佈值於鎂摻雜p 型氮化鎵的特性研
    究,以40keV 、70keV 、150keV 等不同能量及5×10 16 ,5×10 17 ,5×10 18 ,
    1×10 20 cm -3 等不同佈植濃度,佈植在濃度為3.4 ×10 17 cm -3 之鎂摻雜p
    型氮化鎵上,藉以了解矽離子佈植後的氮化鎵試片特性。
    在光特性方面,利用拉曼 (Raman) 量測顯示,佈植造成的缺陷
    在熱處理過程中會有相互聚集的現象,然後才是缺陷的消除;利用光
    激發螢光光譜(photoluminescence)的量測顯示,矽離子佈植會將原本p
    型氮化鎵的藍光發光機制(2.8eV)減弱,而產生黃光放射的發光機制。
    在電性方面,由霍爾量測顯示,佈植入的矽離子濃度一旦大於p
    型氮化鎵的電洞濃度,便可將試片轉變為n 型的氮化鎵,而且由於佈
    植所留下來的傷害影響,電子遷移率會有大幅降低的現象;然後再以
    蕭特基二極體做深層能階暫態(deep-level transient spectroscopy)量
    測,顯示材料中之原生缺陷(native defect)的變化,所以在高濃度佈植
    後轉變為n 型氮化鎵,鎵空缺(gallium vacancy)的缺陷能階因為形成
    能降低而增加,說明了材料中補償效用的影響機制。


    p-type GaN can be converted to n-type by
    Si + ion implantation. We used AFM, XRD, PL, Raman
    scattering, Hall, and DLTS measurement to investigate the mechanism of this conversion.

    目錄 第一章 序論........................................................................................1 1.1 背景及研究動機......................................................................1 1.2 實驗目的.................................................................................2 第二章 量測系統及原理簡述..............................................................4 2.1 離子佈植簡述:......................................................................4 2.2 量測系統及原理概述...............................................................5 2.2.1 光激發光譜.....................................................................5 2.2.1.1 光激發螢光法..............................................................5 2.2.1.2 光激發螢光量測原理...................................................6 2.2.1.3 光子在能帶間之躍遷型式: ..........................................7 2.2.1.4 能隙隨溫度及摻雜濃度影響之變化: ...........................8 2.2.2 拉曼光譜量測.................................................................9 2.2.2.1 拉曼光譜.....................................................................9 2.2.2.2 拉曼光譜原理:...........................................................10 2.2.2.3 大角度入射的拉曼光譜測定方法............................. 11 2.2.3 霍爾效應量測..............................................................12 2.2.3.1 霍爾效應量測法........................................................12 2.2.3.2 霍爾效應量測原理....................................................12 2.2.4 深層能階暫態能譜......................................................14 2.2.4.1 DLTS 量測法.............................................................14 2.2.4.2 DLTS 基本原理..........................................................14 2.2.4.3 缺陷活化能、缺陷濃度及載子截面積的測定..........17 第三章 實驗方法及量測步驟............................................................20 3.1 實驗準備...............................................................................20 試片準備...............................................................................20 3.2 實驗步驟...............................................................................20 3.3 霍爾效應量測元件製作........................................................22 3.4 氮化鎵蕭特基二極體製作....................................................23 製程......................................................................................23 第四章 結果與討論...........................................................................26 前言.............................................................................................26 4.1 拉曼光譜討論與分析.............................................................26 4.1.1 拉曼光譜.....................................................................26 4.1.2 氮化鎵薄膜與拉曼光譜...............................................27 4.1.3 拉曼光譜與離子佈值...................................................28 4.1.4 拉曼光譜與熱處理的修復過程.....................................29 4.2 PL 討論與分析......................................................................31 4.2.1 p 型氮化鎵薄膜與PL 光譜...........................................32 4.2.2 氮化鎵的PL 光譜中之黃光放射.................................34 4.2.3 離子佈植後的PL 光譜................................................35 4.3 霍爾效應量測之討論與分析..................................................37 4.3.1 變溫霍爾量測與活化能...............................................38 4.3.2 載子轉換和濃度變化的分析.......................................39 4.3.2 遷移率變化的分析.......................................................39 4.4 DLTS 討論與分析..................................................................40 4.4.1 氮化鎵之缺陷能階......................................................40 4.4.2 離子佈植之缺陷能階分析...........................................43 第五章 結論......................................................................................45 參考文獻.....................................................................................48

    [1] J. C. Zolper, S. J. Pearton, R. G. Wilson, and R. A. Stall,
    “Implant activation and redistribution of dopants in GaN”, IEEE,
    Ion Implantation Technology, Proceedings of the 11th
    International Conference (1997)
    [2] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J.
    Chang and Y. K. Su, “n + -GaN formed by Si implantation into
    p-GaN”, J. Appl. Phys. 91, 1845 (2002).
    [3] 曾建峰,‘有機金屬氣相磊晶法低溫砷化鎵的變溫霍爾量測及
    深層能階暫態能譜量測 “,交通大學電子物理所,碩士論文
    (1995)。
    [4] 高孝維,”N 型氮化鎵高熱穩定性歐姆接觸之研究”,中央大
    學光電所,碩士論文 (1999)。
    [5] 黃宏基,”P-型氮化鎵歐姆接觸製作研究”,中央大學光電所,
    碩士論文 (2000)。
    [6] Dimity Kirillov, Heon lee, and James S. Harris, Jr., ”Raman
    scattering study of GaN films”, J. Appl. Phys. 80, 4058 (1996).
    [7] F. A. Ponce, J. W. Steeds, C. D. Dyer and G. D. Pitt, “Direct
    imaging of impurity-induced Raman scattering in GaN”, Appl.
    Phys. Lett. 69, 2650 (1996).
    [8] W. Limmer, W. Ritter, and R. Sauer, “Raman scattering in
    ion-implanted GaN”, Appl. Phys. Lett. 72, 2589 (1998).
    [9] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey,
    Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption
    coefficient, energy gap, exciton binding energy and
    recombination lifetime of GaN obtained from transmission
    measurements”, Appl. Phys. Lett. 71, 2572 (1997).
    [10] U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A.
    Ramakrishnan, B. Santic, and P. Schlotter, “Nature of the 2.8 eV
    photoluminescence band in Mg doped GaN”, Appl. Phys. Lett.
    72, 1326 (1998).
    [11] Jörg Neugebauer and Chris G. Van de Walle, ”Gallium vacancies
    and the yellow luminescence in GaN”, Appl. Phys. Lett.69, 503
    (1996).
    [12] C. J. Eiting, P. A. Grudowski, R. D. Dupuis, H. Hsia, Z. Tang, D.
    Becher, H. Kuo, G. E. Stillman, and M. Feng, “Activation
    studies of low-dose Si implants in gallium nitride”, Appl. Phys.
    Lett. 73, 3875 (1998).
    [13] W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler,
    “Activation energies of Si donors in GaN”, Appl. Phys. Lett. 68,
    3144 (1996).
    [14] X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Peartona, M. Fu,
    V. Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J.
    Drummond, R. J. Shul and R. G. Wilson, “Ultrahigh Si + implant
    activation efficiency in GaN using a high-temperature rapid
    thermal process system”, Appl. Phys. Lett. 73, 229 (1998).
    [15] T.L Tansley and R.J. Egan, “Point-defect energies in the nitrides
    of aluminum, gallium, and indium”, Phys. Rev B45, 10942,
    (1992).
    [16] D.W. Jekins and J. D. Dow “Electronic structures and doping of
    InN, InxGa1- xN, and InxAl1- xN”, Phys. Rev. B39, 3317 (1989).
    [17] P. Hacke, H. Nakayama, T. Detchprohm, K. Hiramatsu, and N.
    Sawaki, “Deep levels in the upper band-gap region of lightly
    Mg-doped GaN”, Appl. Phys. Lett. 68, 1362 (1996).
    [18] D. J. Chadi, “Atomic origin of deep levels in p-type GaN:
    Theory”, Appl. Phys. Lett. 71, 2970 (1997).
    [19] D. Haase, M. Schmid, W. Kürner, A. Dörnen, V. Härle, F. Scholz,
    M. Burkard and H. Schweizer, “Deep-level defects and n-type-carrier concentration in nitrogen implanted GaN”, Appl.
    Phys. Lett. 69, 2525 (1996).
    [20] Jörg Neugebauer and Chris G. Van de Walle, “Atomic geometry
    and electronic structure of native defects in GaN”, Phys. Rev.
    B50, 8067 (1994-I).

    QR CODE
    :::