| 研究生: |
江博仁 Bo-Ren Jiang |
|---|---|
| 論文名稱: |
矽離子佈植於p型氮化鎵之特性研究 Investigation of Si-implanted p-type GaN |
| 指導教授: |
李清庭
Ching-Ting Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 氮化鎵 、離子佈植 |
| 外文關鍵詞: | implantation, GaN |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的實驗是研究矽離子佈值於鎂摻雜p 型氮化鎵的特性研
究,以40keV 、70keV 、150keV 等不同能量及5×10 16 ,5×10 17 ,5×10 18 ,
1×10 20 cm -3 等不同佈植濃度,佈植在濃度為3.4 ×10 17 cm -3 之鎂摻雜p
型氮化鎵上,藉以了解矽離子佈植後的氮化鎵試片特性。
在光特性方面,利用拉曼 (Raman) 量測顯示,佈植造成的缺陷
在熱處理過程中會有相互聚集的現象,然後才是缺陷的消除;利用光
激發螢光光譜(photoluminescence)的量測顯示,矽離子佈植會將原本p
型氮化鎵的藍光發光機制(2.8eV)減弱,而產生黃光放射的發光機制。
在電性方面,由霍爾量測顯示,佈植入的矽離子濃度一旦大於p
型氮化鎵的電洞濃度,便可將試片轉變為n 型的氮化鎵,而且由於佈
植所留下來的傷害影響,電子遷移率會有大幅降低的現象;然後再以
蕭特基二極體做深層能階暫態(deep-level transient spectroscopy)量
測,顯示材料中之原生缺陷(native defect)的變化,所以在高濃度佈植
後轉變為n 型氮化鎵,鎵空缺(gallium vacancy)的缺陷能階因為形成
能降低而增加,說明了材料中補償效用的影響機制。
p-type GaN can be converted to n-type by
Si + ion implantation. We used AFM, XRD, PL, Raman
scattering, Hall, and DLTS measurement to investigate the mechanism of this conversion.
[1] J. C. Zolper, S. J. Pearton, R. G. Wilson, and R. A. Stall,
“Implant activation and redistribution of dopants in GaN”, IEEE,
Ion Implantation Technology, Proceedings of the 11th
International Conference (1997)
[2] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J.
Chang and Y. K. Su, “n + -GaN formed by Si implantation into
p-GaN”, J. Appl. Phys. 91, 1845 (2002).
[3] 曾建峰,‘有機金屬氣相磊晶法低溫砷化鎵的變溫霍爾量測及
深層能階暫態能譜量測 “,交通大學電子物理所,碩士論文
(1995)。
[4] 高孝維,”N 型氮化鎵高熱穩定性歐姆接觸之研究”,中央大
學光電所,碩士論文 (1999)。
[5] 黃宏基,”P-型氮化鎵歐姆接觸製作研究”,中央大學光電所,
碩士論文 (2000)。
[6] Dimity Kirillov, Heon lee, and James S. Harris, Jr., ”Raman
scattering study of GaN films”, J. Appl. Phys. 80, 4058 (1996).
[7] F. A. Ponce, J. W. Steeds, C. D. Dyer and G. D. Pitt, “Direct
imaging of impurity-induced Raman scattering in GaN”, Appl.
Phys. Lett. 69, 2650 (1996).
[8] W. Limmer, W. Ritter, and R. Sauer, “Raman scattering in
ion-implanted GaN”, Appl. Phys. Lett. 72, 2589 (1998).
[9] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey,
Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption
coefficient, energy gap, exciton binding energy and
recombination lifetime of GaN obtained from transmission
measurements”, Appl. Phys. Lett. 71, 2572 (1997).
[10] U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A.
Ramakrishnan, B. Santic, and P. Schlotter, “Nature of the 2.8 eV
photoluminescence band in Mg doped GaN”, Appl. Phys. Lett.
72, 1326 (1998).
[11] Jörg Neugebauer and Chris G. Van de Walle, ”Gallium vacancies
and the yellow luminescence in GaN”, Appl. Phys. Lett.69, 503
(1996).
[12] C. J. Eiting, P. A. Grudowski, R. D. Dupuis, H. Hsia, Z. Tang, D.
Becher, H. Kuo, G. E. Stillman, and M. Feng, “Activation
studies of low-dose Si implants in gallium nitride”, Appl. Phys.
Lett. 73, 3875 (1998).
[13] W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler,
“Activation energies of Si donors in GaN”, Appl. Phys. Lett. 68,
3144 (1996).
[14] X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Peartona, M. Fu,
V. Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J.
Drummond, R. J. Shul and R. G. Wilson, “Ultrahigh Si + implant
activation efficiency in GaN using a high-temperature rapid
thermal process system”, Appl. Phys. Lett. 73, 229 (1998).
[15] T.L Tansley and R.J. Egan, “Point-defect energies in the nitrides
of aluminum, gallium, and indium”, Phys. Rev B45, 10942,
(1992).
[16] D.W. Jekins and J. D. Dow “Electronic structures and doping of
InN, InxGa1- xN, and InxAl1- xN”, Phys. Rev. B39, 3317 (1989).
[17] P. Hacke, H. Nakayama, T. Detchprohm, K. Hiramatsu, and N.
Sawaki, “Deep levels in the upper band-gap region of lightly
Mg-doped GaN”, Appl. Phys. Lett. 68, 1362 (1996).
[18] D. J. Chadi, “Atomic origin of deep levels in p-type GaN:
Theory”, Appl. Phys. Lett. 71, 2970 (1997).
[19] D. Haase, M. Schmid, W. Kürner, A. Dörnen, V. Härle, F. Scholz,
M. Burkard and H. Schweizer, “Deep-level defects and n-type-carrier concentration in nitrogen implanted GaN”, Appl.
Phys. Lett. 69, 2525 (1996).
[20] Jörg Neugebauer and Chris G. Van de Walle, “Atomic geometry
and electronic structure of native defects in GaN”, Phys. Rev.
B50, 8067 (1994-I).