跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾元亨
Yuan-Heng Tseng
論文名稱: Onset of movement in a one-dimensional active gel model of cell motility
指導教授: 陳宣毅
Hsuan-Yi Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 53
中文關鍵詞: 生物物理軟物質細胞爬行
外文關鍵詞: biophysics, soft matter, cell crawling
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了理解細胞在基板上爬行的力學機制,本論文提出了一個一維理論模型。此模
    型包含了肌凝蛋白的收縮力、細胞骨架的黏滯力、鍵結和基板的阻力以及細胞前
    後端肌動蛋白絲聚合之間的交互作用。數值模擬本模型的結果顯示(1)肌凝蛋
    白的收縮力(2)肌動蛋白絲的聚合速率在細胞前後端的不對稱性(3)鍵結分布
    的不對稱性可以幫助細胞爬行。當細胞利用收縮力爬行時,其靜止狀態時流場分
    布為零,肌凝蛋白與鍵結在細胞中均勻分布。當肌動蛋白絲的聚合加入模型中時,
    其靜止狀態的流場為逆流分布,肌凝蛋白向中間聚集,鍵結分布靠近細胞兩端。
    當細胞開始移動時,流場與肌凝蛋白的分布失去前後對稱性,細胞前端的鍵結密
    度會因為突出(protrusion)而降低。當細胞移動的速度越快,鍵結分布的極值會
    越來越靠近細胞中段,這是因為成熟的鍵結需要時間形成。


    To understand how the intracellular mechanics affect the motion of a cell, we develop a one-dimensional model for cell migration on a solid substrate. This model includes contractile force from actomyosin network, viscous stress in the cytoskeleton, actin polymerization at the ends of the cell, drag force due to substrate and cell-substrate bonds. Our numerical solutions show that cell motility is facilitated by (i) active contractility of the actyomyosin gel, (ii) asymmetric actin polymerization at cell ends, and (iii) symmetry-breaking in the distribution of cell-substrate bonds. The flow field is zero everywhere in the rest state when the cell motility is facilitated only by active contractility. The corresponding bond density is uniform. The flow field becomes retrograde in the rest state when actin polymerization is included. The corresponding bond density has peaks close to the cell ends for catch bonds. When the cell starts to move, the flow drives the asymmetric distribution of myosin motors. The bond density at the leading end becomes lower due to protrusion. As the speed of the cell increases, bonds in the leading half of the cell move closer to the center because the slow growth of mature focal adhesion complexes.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Protrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Theoretical model 6 2.1 Force balance equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Evolution of motor density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Evolution of the density of cell-substrate bonds . . . . . . . . . . . . . . . . 8 2.4 Actin polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5.1 Stress at the ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5.2 Myosin flux at the ends . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Choices of units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.7 Simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7.1 Force balance equation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7.2 Advection-diffusion equation . . . . . . . . . . . . . . . . . . . . . . . 16 2.7.3 Time-evolution of bond density . . . . . . . . . . . . . . . . . . . . . 17 2.7.4 Kinematic boundary condition . . . . . . . . . . . . . . . . . . . . . . 17 3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Model I: cell crawling initiated by contractility, cell-substrate bonds are replaced by a constant drag coefficient . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Model II: diffusing myosin motors, polymerization/ depolymerization of actin filaments, and constant cell-substrate drag coefficient . . . . . . . . . . . . . 21 3.3 Model III: myosin contractility, actin polymerization, and cell-substrate bonds . . . . . 25 4 Conclusion and future work . . . . . . . . . . . . . 31 Bibliography . . . . . . . . . . . . . 34

    [1] P Recho, T Putelat, and L Truskinovsky. Contraction-driven cell motility. Physical
    Review Letters, 111(10):108102, 2013.
    [2] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Ra
    , Keith Roberts, and Peter
    Walter. Molecular biology of the cell 4th edn (new york: Garland science).
    [3] Xiaorong Fu, Ge Liu, Alexander Halim, Yang Ju, Qing Luo, and Guanbin Song. Mesenchymal
    stem cell migration and tissue repair. Cells, 8(8):784, 2019.
    [4] Laurence Zitvogel, Maha Ayyoub, Bertrand Routy, and Guido Kroemer. Microbiome
    and anticancer immunosurveillance. Cell, 165(2):276, 2016.
    [5] Geo
    rey M Cooper and Robert E Hausman. The development and causes of cancer.
    The cell: A molecular approach, 2, 2000.
    [6] Abbas A. K. Fausto N. Aster J. C. Kumar, V. Robbins and Cotran pathologic basis of
    disease. Elsevier Saunders, 2015.
    [7] Howard C Berg. E. coli in Motion. Springer, New York, 2008.
    [8] Peter Devreotes and Alan Rick Horwitz. Signaling networks that regulate cell migration.
    Cold Spring Harbor Perspectives in Biology, 7(8):a005959, 2015.
    [9] Gregory H Altman, Rebecca L Horan, Ivan Martin, Jian Farhadi, Peter RH Stark,
    Vladimir Volloch, John C Richmond, Gordana Vunjak-Novakovic, and David L Kaplan.
    Cell di
    erentiation by mechanical stress. The FASEB Journal, 16(2):1, 2002.
    [10] Felix Rico, Calvin Chu, Midhat H Abdulreda, Yujing Qin, and Vincent T Moy. Temperature
    modulation of integrin-mediated cell adhesion. Biophysical Journal, 99(5):1387,
    2010.
    [11] Kota Miura and Florian Siegert. Light a
    ects camp signaling and cell movement activity
    in dictyostelium discoideum. Proceedings of the National Academy of Sciences, USA,
    97(5):2111, 2000.
    [12] Frank Juelicher, Karsten Kruse, Jacques Prost, and J-F Joanny. Active behavior of the
    cytoskeleton. Physics Reports, 449(1-3):3, 2007.
    [13] D Bray. Cell Movements: from Molecules to Motility 2nd. Garland Science, New York,
    2001.
    [14] Rob Phillips, Jane Kondev, Julie Theriot, and Hernan Garcia. Physical biology of the
    cell. Garland Science, New York, 2012.
    [15] Thomas D Pollard. Regulation of actin filament assembly by arp2/3 complex and
    formins. Annu. Rev. Biophys. Biomol. Struct., 36:451, 2007.
    [16] Christopher S Chen, Jose L Alonso, Emanuele Ostuni, George M Whitesides, and Donald
    E Ingber. Cell shape provides global control of focal adhesion assembly. Biochemical
    and Biophysical Research Communications, 307(2):355, 2003.
    [17] Benjamin Geiger, Alexander Bershadsky, Roumen Pankov, and Kenneth M Yamada.
    Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature
    Reviews Molecular Cell Biology, 2(11):793, 2001.
    [18] Joanne E Murphy-Ullrich. The de-adhesive activity of matricellular proteins: is intermediate
    cell adhesion an adaptive state? The Journal of Clinical Investigation, 107(7):785,
    2001.
    [19] Alex Mogilner and Leah Edelstein-Keshet. Regulation of actin dynamics in rapidly
    moving cells: a quantitative analysis. Biophysical journal, 83(3):1237, 2002.
    [20] Ricard Alert and Xavier Trepat. Physical models of collective cell migration. Annual
    Review of Condensed Matter Physics, 11:77, 2020.
    [21] Pierre Recho and Lev Truskinovsky. Cell locomotion in one dimension. In Physical
    Models of Cell Motility, page 135. Springer, New York, 2016.
    [22] Thibaut Putelat, Pierre Recho, and Lev Truskinovsky. Mechanical stress as a regulator
    of cell motility. Physical Review E, 97(1):012410, 2018.
    [23] Katsuhisa Tawada and Ken Sekimoto. Protein friction exerted by motor enzymes
    through a weak-binding interaction. Journal of Theoretical Biology, 150(2):193, 1991.
    [24] Ke Hu, Lin Ji, Kathryn T Applegate, Gaudenz Danuser, and Clare M Waterman-Storer.
    Differential transmission of actin motion within focal adhesions. Science, 315(5808):111,
    2007.
    [25] Anders E Carlsson and David Sept. Mathematical modeling of cell migration. Methods
    in Cell Biology, 84:911, 2008.
    [26] Anne J Ridley, Martin A Schwartz, Keith Burridge, Richard A Firtel, Mark H Ginsberg,
    Gary Borisy, J Thomas Parsons, and Alan Rick Horwitz. Cell migration: integrating
    signals from front to back. Science, 302(5651):1704, 2003.
    [27] Arpita Upadhyaya and Alexander van Oudenaarden. Biomimetic systems for studying
    actin-based motility. Current Biology, 13(18):R734, 2003.
    [28] Richard Anthony Lewis Jones. Soft condensed matter, volume 6. Oxford University
    Press, 2002.
    [29] Yusuke T Maeda, Junya Inose, Miki Y Matsuo, Suguru Iwaya, and Masaki Sano. Ordered
    patterns of cell shape and orientational correlation during spontaneous cell migration.
    PLoS One, 3(11):e3734, 2008.
    [30] Tianzhi Luo, Krithika Mohan, Vasudha Srivastava, Yixin Ren, Pablo A Iglesias, and
    Douglas N Robinson. Understanding the cooperative interaction between myosin ii and
    actin cross-linkers mediated by actin filaments during mechanosensation. Biophysical
    Journal, 102(2):238, 2012.
    [31] Erin L Barnhart, Kun-Chun Lee, Kinneret Keren, Alex Mogilner, and Julie A Theriot.
    An adhesion-dependent switch between mechanisms that determine motile cell shape.
    PLoS Biol, 9(5):e1001059, 2011.
    [32] Yu-Li Wang. Reorganization of actin filament bundles in living broblasts. The Journal
    of Cell Biology, 99(4):1478, 1984.
    [33] Masoud Nickaeen, Igor L Novak, Stephanie Pulford, Aaron Rumack, Jamie Brandon,
    Boris M Slepchenko, and Alex Mogilner. A free-boundary model of a motile cell explains
    turning behavior. PLoS Computational Biology, 13(11):e1005862, 2017.
    [34] Joel H Ferziger, Milovan Peric, and Robert L Street. Computational methods for
    dynamics, volume 3. Springer, New York, 2002.
    [35] Graham Horton and Stefan Vandewalle. A space-time multigrid method for parabolic
    partial di
    erential equations. SIAM Journal on Scientic Computing, 16(4):848, 1995.
    [36] Dhruv K Vig, Alex E Hamby, and Charles W Wolgemuth. Cellular contraction can drive
    rapid epithelial
    ows. Biophysical Journal, 113(7):1613, 2017.
    [37] Igor L Novak, Boris M Slepchenko, Alex Mogilner, and Leslie M Loew. Cooperativity
    between cell contractility and adhesion. Physical Review Letters, 93(26):268109, 2004.
    [38] Stephanie I Fraley, Yunfeng Feng, Anjil Giri, Gregory D Longmore, and Denis Wirtz.
    Dimensional and temporal controls of three-dimensional cell migration by zyxin and
    binding partners. Nature Communications, 3(1):1, 2012.
    [39] E Tjhung, A Tiribocchi, D Marenduzzo, and ME Cates. A minimal physical model
    captures the shapes of crawling cells. Nature Communications, 6(1):1, 2015.
    [40] Carles Blanch-Mercader and J Casademunt. Spontaneous motility of actin lamellar
    fragments. Physical Review Letters, 110(7):078102, 2013.
    [41] Ido Lavi, Nicolas Meunier, Raphael Voituriez, and Jaume Casademunt. Motility and
    morphodynamics of conned cells. Physical Review E, 101(2):022404, 2020.

    QR CODE
    :::