跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李易暽
Yi-Lin Li
論文名稱: Growth and electronic properties of Rh and Au nanoclusters supported on CuO/Cu(110)
指導教授: 羅夢凡
Meng-Fan Luo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 128
中文關鍵詞: 氧化銅高能電子繞射儀掃描穿隧式顯微鏡X光光電子能譜儀
外文關鍵詞: Rh, Au, CuO, RHEED, STM, XPS
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過掃描穿隧電子顯微術(STM)、高能電子繞射儀(RHEED)及位於新竹同步輻射中心的X光光源與能譜儀研究銠及金在氧化銅/銅(110)上的生長形貌及電子特性。STM顯示銠在室溫下在氧化銅/銅(110)上便透過自組裝形成三維結構,即便是在很小的鍍量下(0.09 ML)。此三維結構也被RHEED監測到,呼應STM的結果。銠奈米團簇的平均直徑隨著鍍量上升,並在達到0.62 ML以上時,達到1.50奈米左右並趨於飽和。然而平均高度並未隨著鍍量上升,並保持在0.22奈米左右。銠奈米團簇於表面的密度在鍍量達到0.62 ML以上時也達到飽和。綜合團簇密度及粒徑大小的不變性來看,下層的銠奈米團簇可能已經結合形成薄膜。銠奈米團簇的電子特性透過XPS量測。在小鍍量時(0.02到0.12 ML),銠 〖3d〗_(5/2) 軌域的束縛能坐落在306.3 eV,比塊材銠小0.7 eV。隨著鍍量上升,銠 〖3d〗_(5/2) 軌域的束縛能逐漸往高束縛能移動且接近塊材值。並在達到1.44 ML時,坐落於306.8 eV。銠3d雙峰的束縛能在小鍍量時比塊材值還小許多,此結果與一般認知及其他研究的實驗結果不同,可能與電荷從基板或擔體轉移至銠奈米粒子有關。
    金在鍍量小於1 ML時以二維團簇的形式存在於表面,並由STM鑑定。當鍍量增加超過1 ML時,金薄膜便成形,被STM及RHEED所確認。金團簇與薄膜的電子結構也由XPS所鑑定,在小鍍量時(≤ 0.23 ML),金 〖4f〗_(7/2) 軌域的束縛能坐落於84.1 eV,高於塊材0.1 eV。隨著鍍量上升後增加至84.2 eV。金4f雙峰隨鍍量上升的移動方向與一般認知不同,代表金表面的化學環境有所改變,可能與底層氧原子浮出至表面有關。


    By utilizing the reflection high energy diffraction (RHEED), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS), we have investigated the growth and electronic properties of Rh and Au nanoclusters grown on CuO/Cu(110).
    Rh atoms that are deposited on CuO/Cu(110) at 300 K self-assemble into nanoclusters in a 3D (three-dimensional) fashion even at small coverage (0.09 ML), indicated by STM. RHEED patterns also reflect the 3D structure of Rh nanoclusters, and are consistent with STM results. The averaged diameter of these nanoclusters increases with Rh coverage, and saturates at around 1.50 nm when above 0.62 ML. However, the averaged height does not increase with coverage but maintains at around 0.22 nm. The cluster density also saturates when above 0.62 ML, together with the unchanged size of Rh nanoclusters, the clusters at the lower position may merge into a Rh film. Electronic structure of Rh nanoclusters evolves with coverage. At small coverages (0.02 to 0.12 ML), Rh 〖3d〗_(5/2) centers at 306.3 eV which is 0.7 eV smaller than the bulk value (307.0 eV). On increasing the Rh coverage, Rh 〖3d〗_(5/2) shifts toward it bulk value, and finally locates at 306.8 eV when at 1.44 ML. This unusual shift of Rh 3d doublet may indicate a charge transfer from substrate or support to Rh nanoclusters.
    The Au nanoclusters grow in a 2D fashion at sub-monolayer level, indicated by STM. Au films form on the surface when increasing the coverage, identified by the STM images and RHEED patterns. The electronic structure of Au nanoclusters also evolves with coverage. At the low coverages (≤ 0.23 ML), Au 〖4f〗_(7/2) centers at 84.1 eV which is 0.1 eV higher than its bulk value (84.0 eV), and increases to 84.2 eV at higher coverage. The abnormal shift of the Au 4f doublet may indicate that the chemical enviroment on the Au surface is modified by an extra element, such as the oxygen atoms floating to the CuO surface.

    摘要 i Abstract ii 誌謝 iii Contents v List of Figures viii List of Tables xviii Chapter 1 Introduction 1 Chapter 1 References 3 Chapter 2 Literature Survey 4 2.1 Oxygen-induced Cu(110)-(2×1)O reconstruction on Cu(110) 4 2.2 Oxygen-induced Cu(110)-c(6×2)O reconstruction on Cu(110) 7 2.3 Phase transitions between Cu(110)-(2×1)O and Cu(110)- c(6×2)O & Escape of oxygen atoms from Cu(110)-(2×1)O reconstruction after deposition of Ni 8 2.3.1 Phase transition from Cu(110)-(2×1)O to Cu(110)-c(6×2)O 8 2.3.2 Phase transition from Cu(110)-c(6×2)O to Cu(110)-(2×1)O 11 2.3.3 Escape of oxygen atoms from Cu(110)-(2×1)O reconstruction after deposition of Ni 12 2.4 Supported Rh nanoclusters 14 2.4.1 Rh nanoclusters supported on the 〖Al〗_2 O_3/NiAl(100) 14 2.4.2 Rh nanoclusters supported on the graphene/Ir(111) 17 2.5 Supported Au single atoms, nanoclusters and thin film(s) ..........................................................20 2.5.1 Au single atoms supported on Cu(110)-(2×1)O/Cu(110) 20 2.5.2 Au nanoclusters supported on the 〖Al〗_2 O_3/NiAl(100) 22 2.5.3 Monolayer and bilayer Au supported on Mo(112)-(8×2)-TiO_x 24 Chapter 2 References 27 Chapter 3 Experimental Apparatus & Procedure 31 3.1 Vacuum system 31 3.1.1 Introduction of vacuum 31 3.1.2 Ultrahigh vacuum system 32 3.2 Scanning tunneling microscopy (STM) 34 3.2.1 An example of barrier penetration (tunneling) through a one-dimensional square barrier 34 3.2.2 Operation and working principles of STM 35 3.2.3 RHK-UHV 300 STM system with beetle type scan head 37 3.2.4 Preparation of STM Tips 39 3.3 Reflection high energy electron diffraction (RHEED) 41 3.3.1 Theory of diffraction and diffraction condition 41 3.3.2 Operation principle of RHEED 42 3.4 X-ray Photoelectron spectroscopy (XPS) 43 3.4.1 Basic theory of XPS : Photoelectron effect 43 3.4.2 The synchrotron radiation produced by TLS beamline at NSRRC 44 3.4.3 The XPS system at TLS 09A2 endstation 45 3.5 Experimental procedure 45 3.5.1 Sample cleaning 45 3.5.2 Growth of thin-film CuO on Cu(110) 46 3.5.3 Deposition of Rh or Au on CuO/Cu(110) 46 3.6 Estimation of Rh and Au coverage 50 Chapter 3 References 51 Chapter 4 Results 52 4.1 Cu(110) surface 52 4.2 Cu(110)-(2×1)O reconstruction surface 53 4.3 The coexistence surface of Cu(110)-(2×1)O and Cu(110)- c(6×2)O 61 4.4 Rh nanoclusters supported on CuO/Cu(110) 70 4.4.1 RHEED studies of Rh nanoclusters 70 4.4.2 RHEED studies of annealing effect on Rh nanoclusters..............................................74 4.4.3 STM studies of Rh nanoclusters 76 4.4.4 XPS studies of Rh nanoclusters 84 4.5 Au nanoclusters supported on CuO/Cu(110) 87 4.5.1 RHEED studies of Au nanoclusters 88 4.5.2 RHEED studies of annealing effect on Au nanoclusters ..........................................................91 4.5.3 STM studies of Au nanoclusters 92 4.5.4 STM studies of annealing effect on Au nanoclusters 96 4.5.5 XPS studies of Au nanoclusters 98 Chapter 4 References 101 Chapter 5 Conclusion 104

    Chapter 1 References

    [1] M. Haruta, Size-and support-dependency in the catalysis of gold. Catalysis today. 36(1): p. 153-166, 1997.
    [2] M. S. Chen and D. W. Goodman, The structure of catalytically active gold on titania. science. 306(5694): p. 252-255, 2004.
    [3] T.-C. Hung, T.-W. Liao, Z.-H. Liao, P.-W. Hsu, P.-Y. Cai, H. Lee, Y.-L. Lai, Y.-J. Hsu, H.-Y. Chen, J.-H. Wang, and M.-F. Luo, Dependence on size of supported Rh nanoclusters in the decomposition of methanol. ACS Catalysis. 5(7): p. 4276-4287, 2015.
    [4] A. S. Ansari, Z.-Y. Chern, P.-Y. Cai, Y.-W. Huang, G.-J. Liao, J.-H. Wang, and M.-F. Luo, Distinct dependence on size of Pt and Rh nanoclusters on graphene/Pt (111) in the decomposition of methanol-d4. The Journal of Chemical Physics. 151(22), 2019.
    [5] J. Zhou and D. R. Mullins, Rh-promoted methanol decomposition on cerium oxide thin films. The Journal of Physical Chemistry B. 110(32): p. 15994-16002, 2006.
    [6] X. Zhou, Q. Shen, K. Yuan, W. Yang, Q. Chen, Z. Geng, J. Zhang, X. Shao, W. Chen, G. Xu, X. Yang, and K. Wu, Unraveling charge state of supported Au single-atoms during CO oxidation. Journal of the American Chemical Society. 140(2): p. 554-557, 2018.
    [7] I. X. Green, W. Tang, M. Neurock, and J. T. Yates Jr, Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science. 333(6043): p. 736-739, 2011.

    Chapter 2 References

    [1] G. Ertl, Untersuchung von oberflächenreaktionen mittels beugung langsamer elektronen (LEED): I. Wechselwirkung von O_2und N_2 O mit (110)-,(111)-und (100)-Kupfer-Oberflächen. Surface Science. 6(2): p. 208-232, 1967.
    [2] B. G. Briner, M. Doering, H.-P. Rust, and A. M. Bradshaw, Mobility and trapping of molecules during oxygen adsorption on Cu(110). Physical review letters. 78(8): p. 1516, 1997.
    [3] D. J. Coulman, J. Wintterlin, R. Behm, and G. Ertl, Novel mechanism for the formation of chemisorption phases: The (2×1)O-Cu(110) ‘‘added row’’ reconstruction. Physical review letters. 64(15): p. 1761, 1990.
    [4] L. D. Sun, M. Hohage, R. Denk, and P. Zeppenfeld, Oxygen adsorption on Cu(110) at low temperature. Physical Review B. 76(24): p. 245412, 2007.
    [5] J. F. Wendelken, The chemisorption of oxygen on Cu(110) studied by EELS and LEED. Surface Science. 108(3): p. 605-616, 1981.
    [6] K. Kern, H. Niehus, A. Schatz, P. Zeppenfeld, J. Goerge, and G. Comsa, Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu{100}-(2×1)O. Physical review letters. 67(7): p. 855, 1991.
    [7] F. M. Chua, Y. Kuk, and P. J. Silverman, Oxygen chemisorption on Cu(110): An atomic view by scanning tunneling microscopy. Physical review letters. 63(4): p. 386, 1989.
    [8] L. D. Sun, M. Hohage, and P. Zeppenfeld, Oxygen-induced reconstructions of Cu(110) studied by reflectance difference spectroscopy. Physical Review B. 69(4): p. 045407, 2004.
    [9] R. Feidenhans’l and I. Stensgaard, Oxygen-adsorption induced reconstruction of Cu(110) studied by high energy ion scattering. Surface science. 133(2-3): p. 453-468, 1983.
    [10] F. Jensen, F. Besenbacher, E. Lægsgaard, and I. Stensgaard, Surface reconstruction of Cu(110) induced by oxygen chemisorption. Physical Review B. 41(14): p. 10233, 1990.
    [11] Q. Liu, L. Li, N. Cai, W. A. Saidi, and G. Zhou, Oxygen chemisorption-induced surface phase transitions on Cu(110). Surface science. 627: p. 75-84, 2014.
    [12] S. Kishimoto, M. Kageshima, Y. Naitoh, Y. J. Li, and Y. Sugawara, Study of oxidized Cu(110) surface using noncontact atomic force microscopy. Surface science. 602(13): p. 2175-2182, 2008.
    [13] A. P. Baddorf and J. F. Wendelken, High coverages of oxygen on Cu(110) investigated with XPS, LEED, and HREELS. Surface science. 256(3): p. 264-271, 1991.
    [14] K. Moritani, M. Okada, Y. Teraoka, A. Yoshigoe, and T. Kasai, Kinetics of oxygen adsorption and initial oxidation on Cu(110) by hyperthermal oxygen molecular beams. The Journal of Physical Chemistry A. 113(52): p. 15217-15222, 2009.
    [15] X. Duan, O. Warschkow, A. Soon, B. Delley, and C. Stampfl, Density functional study of oxygen on Cu(100) and Cu(110) surfaces. Physical Review B. 81(7): p. 075430, 2010.
    [16] S. Y. Liem, G. Kresse, and J.H.R. Clarke, First principles calculation of oxygen adsorption and reconstruction of Cu(110) surface. Surface science. 415(1-2): p. 194-211, 1998.
    [17] L. Li, Q. Liu, J. Li, W. A. Saidi, and G. Zhou, Kinetic barriers of the phase transition in the oxygen chemisorbed Cu(110)-(2×1)-O as a function of oxygen coverage. The Journal of Physical Chemistry C. 118(36): p. 20858-20866, 2014.
    [18] Y. Li, H. Chen, W. Wang, W. Huang, Y. Ning, Q. Liu, Y. Cui, Y. Han, Z. Liu, and F. Yang, and X. Bao, Crystal-plane-dependent redox reaction on Cu surfaces. Nano Research. 13: p. 1677-1685, 2020.
    [19] M.-C. Wu and P. J. Møller, Growth of ultrathin Cu layers on Cu_2 O/Cu(110) and CuO/Cu(110): Sandwich electronic and epitaxial structures. Physical Review B. 40(9): p. 6063, 1989.
    [20] M. Li, M. T. Curnan, W. A. Saidi, and J. C. Yang, Uneven oxidation and surface reconstructions on stepped Cu(100) and Cu(110). Nano Letters. 22(3): p. 1075-1082, 2022.
    [21] R. Feidenhans’l, F. Grey, M. Nielsen, F. Besenbacher, F. Jensen, E. Laegsgaard, I. Stensgaard, K. W. Jacobsen, J. K. Nørskov, and R. L. Johnson, Oxygen chemisorption on Cu(110): A model for the c(6×2) structure. Physical review letters. 65(16): p. 2027, 1990.
    [22] X. Zhou, Q. Shen, K. Yuan, W. Yang, Q. Chen, Z. Geng, J. Zhang, X. Shao, W. Chen, G. Xu, X. Yang, and K. Wu, Unraveling charge state of supported Au single-atoms during CO oxidation. Journal of the American Chemical Society. 140(2): p. 554-557, 2018.
    [23] J. Zhou, J. Pan, Y. Jin, Z. Peng, Z. Xu, Q. Chen, P. Ren, X. Zhou, and K. Wu, Single-cation catalyst: Ni cation in monolayered CuO for CO oxidation. Journal of the American Chemical Society. 144(19): p. 8430-8433, 2022.
    [24] P. Stone, S. Poulston, R. A. Bennett, N. J. Price, and M. Bowker, An STM, TPD and XPS investigation of formic acid adsorption on the oxygen-precovered c(6×2) surface of Cu(110). Surface science. 418(1): p. 71-83, 1998.
    [25] T.-C. Hung, T.-W. Liao, Z.-H. Liao, P.-W. Hsu, P.-Y. Cai, H. Lee, Y.-L. Lai, Y.-J. Hsu, H.-Y. Chen, J.-H. Wang, and M.-F. Luo, Dependence on size of supported Rh nanoclusters in the decomposition of methanol. ACS Catalysis. 5(7): p. 4276-4287, 2015.
    [26] A. Cavallin, M. Pozzo, C. Africh, A. Baraldi, E. Vesselli, C. Dri, G. Comelli, R. Larciprete, P. Lacovig, S. Lizzit, and D. Alfè, Local electronic structure and density of edge and facet atoms at Rh nanoclusters self-assembled on a graphene template. ACS nano. 6(4): p. 3034-3043, 2012.
    [27] M. Haruta, Size-and support-dependency in the catalysis of gold. Catalysis today. 36(1): p. 153-166, 1997.
    [28] M. F. Luo, H. W. Shiu, M. H. Ten, S. D. Sartale, C. I. Chiang, Y. C. Lin, and Y. J. Hsu, Growth and electronic properties of Au nanoclusters on thin-film Al_2 O_3/NiAl(100) studied by scanning tunnelling microscopy and photoelectron spectroscopy with synchrotron radiation. Surface science. 602(1): p. 241-248, 2008.
    [29] M. S. Chen and D. W. Goodman, The structure of catalytically active gold on titania. science. 306(5694): p. 252-255, 2004.
    [30] M. S. Chen and D. W. Goodman, Catalytically active gold on ordered titania supports. Chemical Society Reviews. 37(9): p. 1860-1870, 2008.
    [31] M. S. Chen, K. Luo, D. Kumar, W. T. Wallace, C.-W. Yi, K. K. Gath, and D. W. Goodman, The structure of ordered Au films on TiO_x. Surface science. 601(3): p. 632-637, 2007.
    [32] R. Nünthel, J. Lindner, P. Poulopoulos, and K. Baberschke, The influence of substrate preoxidation on the growth of Ni on Cu (1 1 0). Surface science. 566: p. 100-104, 2004.
    [33] C. Sorg, N. Ponpandian, A. Scherz, H. Wende, R. Nünthel, T. Gleitsmann, and K. Baberschke, The magnetism of ultrathin Ni films grown with O surfactant. Surface science. 565(2-3): p. 197-205, 2004.

    Chapter 3 References

    [1] 蘇青森等編著,真空技術與應用,行政院國家科學委員會精密儀器發展中心,台灣新竹市,2001。
    [2] A. N. Chaika, S. S. Nazin, V. N. Semenov, S. I. Bozhko, O. Lübben, S. A. Krasnikov, K. Radican, and I. V. Shvets, Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-ångström lateral resolution. Europhysics Letters. 92(4): p. 46003, 2010.
    [3] A. C. Phillips, Introduction to quantum mechanics., John Wiley & Sons., 2013.
    [4] Y. Kuk and P. J. Silverman, Scanning tunneling microscope instrumentation. Review of scientific instruments. 60(2): p. 165-180, 1989.
    [5] R. J. Behm, et al., Scanning tunneling microscopy and related methods., Springer-Verlag, New York, USA, 1990.
    [6] P. K. Hansma and J. Tersoff, Scanning tunneling microscopy. Journal of Applied Physics. 61(2): p. R1-R24, 1987.
    [7] User’s guide of RHK-UHV 300
    [8] S. Hasegawa, Reflection high-energy electron diffraction. Characterization of Materials. 97: p. 1925-1938, 2012.
    [9] C. Kittel and P. McEuen, Introduction to solid state physics., John Wiley & Sons., 2018.
    [10] J. Chastain and R. C. King Jr, Handbook of X-ray photoelectron spectroscopy., Perkin-Elmer Corporation., 40: p. 221, 1992.
    [11] 國家同步輻射研究中心中心簡介,取自https://www.nsrrc.org.tw/chinese/img/pdf/info.pdf。

    Chapter 4 References

    [1] W. Moritz and D. Wolf, Structure determination of the reconstructed Au (110) surface. Surface Science. 88(2-3): p. L29-L34, 1979.
    [2] H. Niehus, Analysis of the Pt (110)-(1× 2) surface reconstruction. Surface Science. 145(2-3): p. 407-418, 1984.
    [3] 劉冠辰,The Effect of Au and Rh Nanoclusters on Methanol Decomposition on CuO/Cu(110),國立中央大學,碩士論文,桃園市,民國102年。
    [4] L. D. Sun, M. Hohage, R. Denk, and P. Zeppenfeld, Oxygen adsorption on Cu(110) at low temperature. Physical Review B. 76(24): p. 245412, 2007.
    [5] D. J. Coulman, J. Wintterlin, R. Behm, and G. Ertl, Novel mechanism for the formation of chemisorption phases: The (2×1)O-Cu(110) ‘‘added row’’ reconstruction. Physical review letters. 64(15): p. 1761, 1990.
    [6] J. F. Wendelken, The chemisorption of oxygen on Cu(110) studied by EELS and LEED. Surface Science. 108(3): p. 605-616, 1981.
    [7] K. Kern, H. Niehus, A. Schatz, P. Zeppenfeld, J. Goerge, and G. Comsa, Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu{100}-(2×1)O. Physical review letters. 67(7): p. 855, 1991.
    [8] F. M. Chua, Y. Kuk, and P. J. Silverman, Oxygen chemisorption on Cu(110): An atomic view by scanning tunneling microscopy. Physical review letters. 63(4): p. 386, 1989.
    [9] L. D. Sun, M. Hohage, and P. Zeppenfeld, Oxygen-induced reconstructions of Cu(110) studied by reflectance difference spectroscopy. Physical Review B. 69(4): p. 045407, 2004.
    [10] R. Feidenhans’l and I. Stensgaard, Oxygen-adsorption induced reconstruction of Cu(110) studied by high energy ion scattering. Surface science. 133(2-3): p. 453-468, 1983.
    [11] F. Jensen, F. Besenbacher, E. Lægsgaard, and I. Stensgaard, Surface reconstruction of Cu(110) induced by oxygen chemisorption. Physical Review B. 41(14): p. 10233, 1990.
    [12] Q. Liu, L. Li, N. Cai, W. A. Saidi, and G. Zhou, Oxygen chemisorption-induced surface phase transitions on Cu(110). Surface science. 627: p. 75-84, 2014.
    [13] S. Kishimoto, M. Kageshima, Y. Naitoh, Y. J. Li, and Y. Sugawara, Study of oxidized Cu(110) surface using noncontact atomic force microscopy. Surface science. 602(13): p. 2175-2182, 2008.
    [14] A. P. Baddorf and J. F. Wendelken, High coverages of oxygen on Cu(110) investigated with XPS, LEED, and HREELS. Surface science. 256(3): p. 264-271, 1991.
    [15] K. Moritani, M. Okada, Y. Teraoka, A. Yoshigoe, and T. Kasai, Kinetics of oxygen adsorption and initial oxidation on Cu(110) by hyperthermal oxygen molecular beams. The Journal of Physical Chemistry A. 113(52): p. 15217-15222, 2009.
    [16] X. Duan, O. Warschkow, A. Soon, B. Delley, and C. Stampfl, Density functional study of oxygen on Cu(100) and Cu(110) surfaces. Physical Review B. 81(7): p. 075430, 2010.
    [17] S. Y. Liem, G. Kresse, and J.H.R. Clarke, First principles calculation of oxygen adsorption and reconstruction of Cu(110) surface. Surface science. 415(1-2): p. 194-211, 1998.
    [18] L. Li, Q. Liu, J. Li, W. A. Saidi, and G. Zhou, Kinetic barriers of the phase transition in the oxygen chemisorbed Cu(110)-(2×1)-O as a function of oxygen coverage. The Journal of Physical Chemistry C. 118(36): p. 20858-20866, 2014.
    [19] M. Li, M. T. Curnan, W. A. Saidi, and J. C. Yang, Uneven oxidation and surface reconstructions on stepped Cu(100) and Cu(110). Nano Letters. 22(3): p. 1075-1082, 2022.
    [20] Y. Li, H. Chen, W. Wang, W. Huang, Y. Ning, Q. Liu, Y. Cui, Y. Han, Z. Liu, and F. Yang, and X. Bao, Crystal-plane-dependent redox reaction on Cu surfaces. Nano Research. 13: p. 1677-1685, 2020.
    [21] M.-C. Wu and P. J. Møller, Growth of ultrathin Cu layers on Cu_2 O/Cu(110) and CuO/Cu(110): Sandwich electronic and epitaxial structures. Physical Review B. 40(9): p. 6063, 1989.
    [22] G. Ertl, Untersuchung von oberflächenreaktionen mittels beugung langsamer elektronen (LEED): I. Wechselwirkung von O_2und N_2 O mit (110)-,(111)-und (100)-Kupfer-Oberflächen. Surface Science. 6(2): p. 208-232, 1967.
    [23] R. Feidenhans’l, F. Grey, M. Nielsen, F. Besenbacher, F. Jensen, E. Laegsgaard, I. Stensgaard, K. W. Jacobsen, J. K. Nørskov, and R. L. Johnson, Oxygen chemisorption on Cu(110): A model for the c(6×2) structure. Physical review letters. 65(16): p. 2027, 1990.
    [24] T.-C. Hung, T.-W. Liao, Z.-H. Liao, P.-W. Hsu, P.-Y. Cai, H. Lee, Y.-L. Lai, Y.-J. Hsu, H.-Y. Chen, J.-H. Wang, and M.-F. Luo, Dependence on size of supported Rh nanoclusters in the decomposition of methanol. ACS Catalysis. 5(7): p. 4276-4287, 2015.
    [25] M. Sterrer, T. Risse, U. M. Pozzoni, L. Giordano, M. Heyde, H.-P. Rust, G. Pacchioni, and H.-J. Freund, Control of the charge state of metal atoms on thin MgO films. Physical review letters. 98(9): p. 096107, 2007.
    [26] G. Pacchioni, L. Giordano, and M. Baistrocchi, Charging of metal atoms on ultrathin MgO/Mo (100) films. Physical review letters. 94(22): p. 226104, 2005.
    [27] R. Nünthel, J. Lindner, P. Poulopoulos, and K. Baberschke, The influence of substrate preoxidation on the growth of Ni on Cu (1 1 0). Surface science. 566: p. 100-104, 2004.

    QR CODE
    :::