跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳玉菁
Yu-ching Chen
論文名稱: 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究
The study of β-In2S3 compound photoelectrode thin film by chemical bath deposition
指導教授: 洪勵吾
Lih-wu Hourng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 98
中文關鍵詞: 產氫化學浴沉積法光電極硫化銦
外文關鍵詞: In2S3, Photoelectrode, Chemical bath deposition, Hydrogen
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用化學浴沉積法將β-In2S3光電極薄膜沉積於導電玻璃上,並將其應用作為光電化學產氫系統中的光電極;化學浴沉積法具設備簡單、製程便宜、可大面積生產等優點,為高經濟效益的化學製程;β-In2S3為低毒性且可吸收紫外光與部分可見光波段,因此極具發展潛力。本研究改變添加硝酸量、鍍層層數與磁石轉速、燒結溫度、陽陰離子莫耳數比例、油浴溫度,用以探討薄膜結晶性、表面型態、光學及光電化學性質。所製備之β-In2S3薄膜在陽陰離子莫耳數比例為一比七、硝酸量為3.5ml、鍍層層數四層、燒結溫度400℃、油浴溫度80℃有較高的光電流效益,直接能隙值為2.1 eV。利用100 mW/cm2(AM 1.5G)的模擬太陽光照射,無施加偏壓時其光電流值為5.59 mA/cm2,施加偏壓0.5V時其光電流值為12 mA/cm2。較文獻上其他相同製程的硫化物薄膜,有較高的光電流效益。


    In this study, chemical bath deposition (CBD) is applied to deposit β-In2S3 thin film on indium tin oxide coated glass (ITO), which can be used as the photoelectrode in photoelectrochemical production of hydrogen. The advantages of chemical bath deposition method are simple equipment, inexpensive and large area deposition. β-In2S3 can absorb ultraviolet and part of visible light, and has an extremely low toxicity so that it has large potential as the photoelectrode thin film. In our experiment, we investigate the crystal structure , morphology, optic property, and PEC performance under various working parameters, such as amount of nitric acid , number of thin film and stirring rate , thermal treatment temperature, cation and anion ratio, and bath temperature. The results show that the resulting β-In2S3 photoelectrode thin film has the direct band gap of 2.1 eV. With 100 mW/cm2(AM 1.5G) simulation sunlight as the light source, the photocurrent density of β-In2S3 photoelectrode thin film is 5.59 mA/cm2 at external voltage of 0 V(vs. Ag/AgCl), and 12 mA/cm2 at external voltage of 0.5 V(vs. Ag/AgCl), respectively. The photo-electric properties of the present thin film in better than that using the same process in literature before.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 化學浴沉積法文獻回顧 3 1-2-2 光觸媒文獻回顧 5 1-2-3 In2S3薄膜文獻回顧 7 1-3 研究目的 8 第二章 理論基礎 9 2-1 光電化學產氫機制 9 2-2 光電極 11 2-3 化學浴沉積法原理 12 2-3-1 化學水浴沉積法(Chemical bath deposition) 12 2-3-2 溶解度積與離子濃度積 13 2-3-3 沉積成核機制 16 2-3-4 薄膜成長的過程 17 第三章 實驗步驟與方法 20 3-1 實驗流程與實驗參數設定 20 3-2 實驗材料及實驗裝置 20 3-2-1 實驗基材 20 3-2-2 實驗藥品 21 3-2-3 實驗設備 22 3-3 實驗步驟 23 3-3-1 基材清洗與組裝 23 3-3-2 鍍液配製與反應鍍液調配方法 24 3-3-3 鍍膜之反應過程 25 3-3-4 光電極薄膜之熱處理 26 3-3-5 薄膜電極封裝 26 3-4 薄膜物性量測分析 27 3-4-1 X-ray Diffraction(X光粉末繞射儀) 27 3-4-2 Scanning Electron Microscope(掃描式電子顯微鏡) 28 3-4-3 UV-visible(紫外/可見光光譜儀) 29 3-4-4 光電化學(光電流)性質量測分析 29 3-4-5 穩定性測試 31 第四章 結果與討論 32 4-1 硝酸量對薄膜的影響 32 4-2 鍍層層數與磁石轉速對薄膜的影響 35 4-3 熱處理溫度對薄膜的影響 37 4-4 陽陰離子莫耳數比例對薄膜的影響 39 4-5 油浴溫度對薄膜的影響 40 4-6 薄膜穩定性測試 43 第五章 結論與未來展望 44 5-1 結論 44 5-2 未來展望 46 參考文獻 47

    1. 「聯合國氣候變化綱要公約第15次締約國會議(COP15)與京都議定書生效第5次締約國會議(CMP5)」,http://www.cepd.gov.tw/m1.aspx?sNo=0013098。
    2. 吳怡萱,再生能源概論,五南,台北市,(2008)。
    3. 莊嘉琛,太陽能電池-太陽電池篇,全華圖書,pp. 3-5,(1997)。
    4. A. Kudo, “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, Vol. 31, pp. 197-202, (2006).
    5. The Economist Technology, Quarterly, March 25, p. 29 (2001).
    6. R. S. Mane, and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films”, Materials Chemistry and Physics, Vol. 65, pp. 1-31, (2000).
    7. G. Shang, K. Kunze, M. j. H. Smith, and E. N. Duesler, “Low-temperature chemical vapor deposition of indium sulfide thin films using a novel single-source indium thiocarboxylate compound as precursor” Chemical Vapor Deposition, Vol. 2, pp. 242-244, (1996).
    8. S. Gorai, A. Datta and S. Chaudhuri,, “Solvothermal synthesis and characterization of InS”, Materials Letters, Vol. 59, pp. 3050-3053, (2005).
    9. T. T. John, C. S. Kartha, K. P. Vijayakumar, T. Abe, and Y. Kashiwaba, “Preparation of indium sulfide thin films by spray pyrolysis using a new precursor indium nitrate”, Applied Surface Science, Vol. 252, pp. 1360-1367, (2005).
    10. M. G. Sandoval-Paz, M. Sotelo-Lerma, J. J. Valenzuela-Jáuregui, M. Flores-Acosta, and R. Ramirez-Bon, “Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique”, Thin Solid Films, Vol. 472, pp. 5-10, (2005).
    11. K. Govender, D. S. Boyle, and P. O’Brien, “Developing cadmium-free window layers for solar cell applications: some factors controlling the growth and morphology of β-indium sulfide thin films and related (In,Zn)S ternaries”, Journal of Materials Chemistry, Vol. 13, pp. 2242-2247, (2003).
    12. C. D. Lokhande, A.Ennaoui, P. S Patil, M.Giersig, K. Diesner, M. Muller, and H. Tributsch, “Chemical bath deposition of indium sulphide thin flms: preparation and characterization”, Thin Solid Films, Vol. 340, pp. 18-23, (1999).
    13. K. Yamaguchi, T. Yoshida, and H. Minoura, “Structural and compositional analyses on indium sulfide thin films deposited in aqueous chemical bath containing indium chloride and thioacetamide”, Thin Solid Films, Vol. 431-432, pp. 354-358, (2003).
    14. B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, and C. Maffiotte, “Quartz crystal microbalance study of the growth of indium(III) sulphide films from a chemical solution”, Electrochim. Acta, Vol. 49, pp. 737-744, (2004).
    15. B. Yahmadi, N. Kamoun, R. Bennaceur, M. Mnari, M. Dachraoui, and K. Abdelkrim, “Structural analysis of indium sulphide thin films elaborated by chemical bath deposition.”, Thin Solid Films, Vol. 473, pp. 201–207, (2005).
    16. O. Houser, and E. Beisalski, “PbS film fabrication”, Chem-Ztg, Vol. 34, pp. 1079-1081, (1910).
    17. V. Rakovics , Zs. J. Horváth, Zs. E. Horváth, I. Bársony, C. Frigeri , and T. Besagni, “Investigation of CdS/InP heterojunction prepared by chemical bath deposition”, Physica Status Solidi C, Vol. 4, pp. 1490-1493, (2007).
    18. B. Pejova, M. Najdoski, I. Grozdanov, and S. K. Dey, “Chemical bath deposition of nanocrystalline (111) textured thin films”, Materials Letters, Vol. 43, pp. 269-273, (2000).
    19. D. Hariskos, M. Powalla, N. Chevaldonnet, D. Lincot, A. Schindler , and B. Dimmler, “Chemical bath deposition of CdS buffer layer: prospects of increasing materials yield and reducing waste” , Thin Solid Films, Vol. 387, pp. 179-181, (2001).
    20. U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Chemical and structural modifications of laser treated iron surfaces: investigation of laser processing parameters”, Applied Surface Science, Vol. 230 , pp. 364-370, (2004) .
    21. S. Biswas, M. F. Hossain, T. Takahashi, Y. Kubota, and A. Fujishima, “Photocatalytic activity of high-vacuum annealed CdS- thin film”, Thin Solid Films, Vol. 516, pp. 7313-7317 , (2008).
    22. T. Ishiyama, T. Arai, Y. Sato, K. Shinoda, B. Jeyadevan, and K. Tohji,“Photocatalytic efficiency of CdS film synthesized by CBD method”, American Institute of Physics Conference Proceedings, Vol. 833, pp. 23-26, (2006).
    23. H. Liu, and L. Gao, “Synthesis and properties of CdSe-sensitized rutile nanocrystals as a visible light-responsive photocatalyst”, Journal of the American Ceramic Society, Vol. 88, pp. 1020-1022, (2005).
    24. A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, Vol.238, Number 5358, pp. 37-38, (1972).
    25. A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts for water splitting”, International Journal of Hydrogen Energy, Vol. 32, pp. 2673–2678, (2007).
    26. A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chemical Society Reviews, Vol. 38, pp. 253-278, (2009).
    27. H. Kato, and A. Kudo, “Visible-light-response and photocatalytic activities of and photocatalysts codoped with antimony and chromium”, Journal of Physical Chemistry B, Vol. 106, pp. 5029-5034, (2002).
    28. X. Fu, X. Wang, Z. Chen, Z. Zhang, Z. Li, Dennis Y.C. Leung, L. Wu, and X. Fu, “Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation”, Applied Catalysis B: Environmental, Vol. 95, pp.393-399, (2010).
    29. F. E. Osterloh, “Inorganic materials as catalysts for photochemical Splitting of Water”, Chemistry of Materials, Vol. 20, pp. 35-54, (2008).
    30. E.N. Savinov, Y.A. Gruzdkov, and V.N. Parmon, “Suspensioms of semiconductors with microheterojunctions-a new type of highlyefficient photocatalyst for dihydrogen production from solution of hydrogen sulfide and sulfideions”, Int. J. Hydrogen Energy, Vol. 14, pp. 1-9, (1989).
    31. S. D. Naik, T. C. Jagadale, S. K. Apte, R. S. Sonawane, M. V. Kulkarni, S. I. Patil, S. B.Ogale, and B. B. Kale, ” Rapid phase-controlled microwave synthesis of nanostructured hierarchical tetragonal and cubic β-In2S3 dandelion flowers”, Chemical Physics Letters, Vol. 452, pp.301-305, (2008).
    32. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photoelectrochemical hydrogen generation from water using solar energy. Materialsrelated aspects”, International Journal of Hydrogen Energy, Vol. 27, pp. 991-1022, (2002).
    33. 呂宗昕,圖解奈米科技與光觸媒,商周出版,臺北市,(2003)。
    34. R. S. Mane, and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films”, Materials Chemistry and Physics, Vol. 65, pp. 1-31, (2000).
    35. P. O.Brien and J. McAleese, “Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS”, Journal of Material Chemistry, Vol. 8, pp. 2309–2314, (1998).
    36. H. Y. Xu, H. Wang, T. N. Jin, and H. Yan, “Rapid fabrication of luminescent Eu: films by microwave-assisted chemical solution deposition”, Nanotechnology, Vol. 16, pp. 65-69, (2005).
    37. D. Chen and J. Ye, “Photocatalytic evolution under visible light irradiation on photocatalyst”, Journal of Physics and Chemistry of Solids, Vol. 68, pp. 2317-2320, (2007).
    38. W. S. Chang, C. C. Wu, M. S. Jeng, K. W. Cheng, C. M. Huang, and T. C. Lee, “Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications”, Materials Chemistry and Physics, Vol. 120, pp. 307-312, (2010).
    39. S. O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall, pp. 255-273, (2001).
    40. B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, and C. Maffiotte, “Quartz crystal microbalance study of the growth ofindium(III) sulphide films from a chemical solution”, Electrochimica Acta, Vol. 49, pp. 737-744 , (2004).
    41. P. O’Brien and J. McAleese, “Developing an understanding of theprocesses controlling the chemical bath deposition of ZnS and CdS”, Journal of Material Chemistry, Vol. 8, pp. 2309–2314, (1998).
    42. R. Zhai, S. B. Wang, H. Y. Xu, H. Wang, and H. Yan, “Rapid formation of CdS, ZnS thin films by microwave-assisted chemical bath deposition”, Materials Letters, Vol. 59, pp. 1497-1501, (2005).
    43. J. I. Pankove, Optical Process in Semiconductor, Prentice Hall, New York, (1971).

    QR CODE
    :::