跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卓冠宇
Kuan-Yu Cho
論文名稱: Some Properties of Dipolar SLE
指導教授: 方向
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 119
中文關鍵詞: 帶型 SLE
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們研讀了一系列定義在複數平面上的曲線(或這曲線空間的等價類)的測度,包括了溢出測度、布朗氣泡測度、布朗環測度。我們研讀了帶形上的 Loewner 鍊。我們證明了帶有驅動點 0+ 的帶型 SLE𝜅(𝜌) 的共形限制性。當 𝜅 ∈ (0, 8/3] 時,我們得到了大小區域的帶型 SLE𝜅 之間的 Radon-Nikodym 導數的表達式。

    本論文的大綱如下:在第 1 章,我們簡要地介紹 SLE 的發展。在第 2 章,我們介紹了一些關於共形變換的性質。我們還介紹了布朗測度和邊界泊松核。我們給出了帶形情況的一些布朗測度的計算。在第 3 章,我們首先介紹(弦) Loewner 微分方程,並給出帶形情形的證明。我們給出了帶形 Loewner 鏈經由共形變換後的一些計算。最後我們介紹 SLE 過程。在第 4 章,我們給了主要結論的證明。


    In this thesis, we study a series of measures defined on the space of curves in the complex plane (or the equivalence classes of the curves space), including excursion measures, Boundary bubble measures, and Loop measures. We study the Loewner chain in the strip {𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ ∶ 𝑦 ∈ (0, 𝜋)}. We show the conformal restriction property for the dipolar SLE𝜅(𝜌) with a force point 0+, and we obtain an expression for the Radon-Nikodym derivative of dipolar SLE𝜅 in a domain with respect to dipolar SLE𝜅 in a subdomain for 𝜅 ∈ (0, 8/3].

    The outline of this thesis is as follows: In Chapter 1, we briefly introduce the development of SLE. In Chapter 2, we introduce some properties about conformal transformations. We also introduce Brownian measures and the boundary Poisson kernels. Some calculations of Brownian measures for the dipolar case will be given. In Chapter 3, we first introduce the (chordal) Loewner differential equation and give the proofs for the dipolar case, and we show some calculations for the Loewner chain mapped by conformal transformations, and then introduce SLE process. In Chapter 4, we give the proofs of our main results.

    中文摘要v Abstract vi List of Figures viii 1 Introduction 1 1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Conformal Transformation 17 2.1 Harmonic Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Half-Plane Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Strip Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Brownian Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Schramm-Loewner Evolution 62 3.1 Loewner Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Chordal Loewner Equation . . . . . . . . . . . . . . . . . . . . . . 64 3.1.2 Dipolar Loewner Equation . . . . . . . . . . . . . . . . . . . . . . . 68 3.1.3 Loewner Chain Mapped by a Conformal Transformation . . . . . . 74 3.2 Schramm-Loewner Evolution (SLE) . . . . . . . . . . . . . . . . . . . . . . 81 4 Proof of Theorem 86 4.1 The locality property for dipolar SLE6 . . . . . . . . . . . . . . . . . . . . 87 4.2 The Conformal Restriction Property for Dipolar SLE8/3 . . . . . . . . . . . 88 4.3 The Radon-Nikodym Derivative of Dipolar SLE . . . . . . . . . . . . . . . 101 Bibliography 107

    Alberts, T. and Duminil-Copin, H. (2010). Bridge decomposition of restriction measures.
    Journal of Statistical Physics, 140(3):467–493.
    Bak, J. and Newman, D. (2010). Complex Analysis. Undergraduate Texts in Mathematics.
    Springer New York.
    Bauer, M., Bernard, D., and Houdayer, J. (2005). Dipolar stochastic Loewner evolutions.
    Journal of Statistical Mechanics: Theory and Experiment, 2005(03):P03001.
    Bauer, M., Bernard, D., and Kennedy, T. (2009). Conditioning Schramm–Loewner evolutions
    and loop erased random walks. Journal of mathematical physics, 50(4):043301.
    Beffara, V. (2008). The dimension of the SLE curves. The Annals of Probability, 36(4):
    1421–1452.
    Billingsley, P. (2013). Convergence of Probability Measures. Wiley Series in Probability
    and Statistics. Wiley.
    Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and SLE6 :
    a proof of convergence. Probability theory and related fields, 139(3-4):473–519.
    Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., and Smirnov, S. (2014).
    Convergence of Ising interfaces to Schramm’s SLE curves. Comptes Rendus Mathematique,
    352(2):157–161.
    Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal
    invariance of fermionic observables. Inventiones mathematicae, 189(3):515–580.
    Conway, J. B. (2012). Functions of one complex variable II, volume 159. Springer Science
    & Business Media.
    de Branges, L. (1985). A proof of the Bieberbach conjecture. Acta Mathematica, 154(1):
    137–152.
    Dubédat, J. (2005). SLE (𝜅, 𝜌) martingales and duality. The Annals of Probability, 33(1):
    223–243.
    Field, L. S. and Lawler, G. F. (2013). Reversed radial SLE and the Brownian loop
    measure. Journal of Statistical Physics, 150(6):1030–1062.
    Han, Y. (2017). Some problems about SLE. PhD thesis, Université d’Orléans.
    Hongler, C. and Kytölä, K. (2013). Ising interfaces and free boundary conditions. Journal
    of the American Mathematical Society, 26(4):1107–1189.
    Izyurov, K. (2015). Smirnov’s observable for free boundary conditions, interfaces and
    crossing probabilities. Communications in Mathematical Physics, 337(1):225–252.
    Kang, N.-G. and Tak, H.-J. (2013). Conformal field theory of dipolar SLE with the
    dirichlet boundary condition. Analysis and Mathematical Physics, 3(4):333–373.
    Kemppainen, A. (2010). Stationarity of SLE. Journal of Statistical Physics, 139(1):
    108–121.
    Kemppainen, A. (2017). Schramm–Loewner Evolution. SpringerBriefs in Mathematical
    Physics. Springer International Publishing.
    Kesten, H. (1963). On the number of self-avoiding walks. Journal of Mathematical Physics,
    4(7):960–969.
    Kesten, H. (1964). On the number of self-avoiding walks. II. Journal of Mathematical
    Physics, 5(8):1128–1137.
    Kytölä, K. (2006). On conformal field theory of SLE(𝜅, 𝜌). Journal of statistical physics,
    123(6):1169–1181.
    Lawler, G. F. (1996). Hausdorff dimension of cut points for Brownian motion. Electronic
    Journal of Probability, 1:1–20.
    Lawler, G. F. (2008). Conformally Invariant Processes in the Plane. Mathematical surveys
    and monographs. American Mathematical Society.
    Lawler, G. F. (2009). Partition functions, loop measure, and versions of SLE. Journal of
    Statistical Physics, 134(5):813–837.
    Lawler, G. F. (2013). Continuity of radial and two-sided radial SLE at the terminal point.
    Contemporary Mathematics, 590:101–124.
    Lawler, G. F. (2018). Notes on the bessel process. Lecture notes. Available on the webpage
    of the author.
    Lawler, G. F., Schramm, O., and Werner, W. (2001). Values of Brownian intersection
    exponents, II: Plane exponents. Acta Mathematica, 187(2):275–308.
    Lawler, G. F., Schramm, O., and Werner, W. (2003). Conformal restriction: the chordal
    case. Journal of the American Mathematical Society, 16(4):917–955.
    Lawler, G. F., Schramm, O., and Werner, W. (2004a). Conformal invariance of planar looperased
    random walks and uniform spanning trees. The Annals of Probability, 32(1B):
    939 – 995.
    Lawler, G. F., Schramm, O., and Werner, W. (2004b). On the scaling limit of planar selfavoiding
    walk. In Fractal geometry and applications: A jubilee of Benoît Mandelbrot.
    Multifractals, probability and statistical mechanics, applications. In part the proceedings
    of a special session held during the annual meeting of the American Mathematical Society,
    San Diego, CA, USA, January 2002, pages 339–364. Providence, RI: American
    Mathematical Society (AMS).
    Lawler, G. F. and Werner, W. (2004). The Brownian loop soup. Probability theory and
    related fields, 128(4):565–588.
    Le Gall, J.-F. (2016). Brownian motion, martingales, and stochastic calculus. Springer.
    Lind, J. R. (2005). A sharp condition for the Loewner equation to generate slits. Annales
    Academiae Scientiarum Fennicae. Mathematica, 30(1):143–158.
    Mandelbrot, B. B. (1982). The fractal geometry of nature, volume 1. WH freeman New
    York.
    Marshall, D. E. and Rohde, S. (2005). The Loewner Differential Equation and Slit Mappings.
    Journal of the American Mathematical Society, 18(4):763–778.
    Miller, J. and Sheffield, S. (2016). Imaginary geometry III: reversibility of SLE𝜅 for
    𝜅 ∈ (4, 8). Annals of Mathematics, 184(2):455–486.
    Pommerenke, C. (1992). Boundary Behaviour of Conformal Maps. Grundlehren der
    mathematischen Wissenschaften. Springer Berlin Heidelberg.
    Revuz, D. and Yor, M. (2013). Continuous martingales and Brownian motion, volume
    293. Springer Science & Business Media.
    Rudin, W. (1987). Real and Complex Analysis. Mathematics series. McGraw-Hill.
    Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning
    trees. Israel Journal of Mathematics, 118(1):221–288.
    Schramm, O. (2001). A percolation formula. Electronic Communications in Probability,
    6:115–120.
    Schramm, O. (2006). Conformally Invariant Scaling Limits. http://dbwilson.com/schra
    mm/memorial/ICM.pdf. (ICM Madrid 2006 plenary lecture).
    Schramm, O. and Rohde, S. (2005). Basic properties of SLE. Annals of mathematics,
    161(2):883–924.
    Schramm, O. and Sheffield, S. (2005). Harmonic explorer and its convergence to SLE4.
    The Annals of Probability, 33(6):2127–2148.
    Schramm, O. and Sheffield, S. (2009). Contour lines of the two-dimensional discrete
    Gaussian free field. Acta mathematica, 202(1):21–137.
    Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math,
    11:659–669.
    Smirnov, S. (2001). Critical percolation in the plane : I. Conformal invariance and Cardy’s
    formula. II. Continuum scaling limit.
    Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holmorphic
    fermions in the Ising model. Annals of mathematics, pages 1435–1467.
    Virág, B. (2003). Brownian beads. Probability theory and related fields, 127(3):367–387.
    Werner, W. (2004). Girsanov’s transformation for SLE(𝜅, 𝜌) processes, intersection exponents
    and hiding exponents. Annales de la Faculté des sciences de Toulouse : Mathématiques,
    Ser. 6, 13(1):121–147.
    Wu, H. (2015). Conformal restriction: the radial case. Stochastic Processes and their
    Applications, 125(2):552–570.
    Zhan, D. (2004). Random Loewner chains in Riemann surfaces. PhD thesis, California
    Institute of Technology.
    Zhan, D. (2008a). Duality of chordal SLE. Inventiones mathematicae, 174(2):309–353.
    Zhan, D. (2008b). Reversibility of Chordal SLE. The Annals of Probability, 36(4):1472–
    1494.
    Zhan, D. (2008c). The scaling limits of planar LERW in finitely connected domains. The
    Annals of Probability, 36(2):467–529.
    Zhan, D. (2010). Duality of chordal SLE, II. Annales de l’I.H.P. Probabilités et statistiques,
    46(3):740–759.

    QR CODE
    :::