跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯奕恩
Mhar Ian Cua Estayan
論文名稱: The Effects of Sustain Stretching and Compression in the Inter-beat Interval and Beat Rate Variability of Embryonic Cardiomyocytes
指導教授: 陳志強
Chi-Keung Chan
黎璧賢
Pik-Yin Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 生物物理研究所
Graduate Institute of Biophysics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 105
中文關鍵詞: 心率壓縮
外文關鍵詞: Mechanical Stretching, Beat Rate Variability, Inter-beat Interval
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多的觀察指出心肺復甦術是在心臟上施加機械應力而使得心臟重新跳動。構成心臟的細胞主要有心肌細胞以及纖維母細胞兩種細胞都具有感應機械應力的離子通道並且可以被釓所抑制這項研究的目的是想要觀察在不同的密度的纖維母細胞的心肌細胞培養中,機械應力是否影響心肌細胞的動態反應。為了更詳細瞭解機械應力對心臟的動態的影響,我們設計了兩種機械應力的刺激方式: 1.) 持續性拉伸 以及 2.)持續性壓縮。我們記錄了心肌細胞跳動的影響並且計算了的脈衝間隔以及心律變異。我們的研究發現機械應力對於有高濃度的纖維母細胞的心肌培養之脈衝間隔以及心律變異沒有顯著性影響,加入釓亦無影響。在攝氏27度的時候,機械應力可以影響低濃度的纖維母細胞的心肌培養之脈衝間隔以及心律變異。


    Mechanical stress on the heart has been observed to retrieve heart beating by means of performing cardiopulmonary resuscitation. Cardiomyocyte and Fibroblast are cells that comprises the heart. Both cells have stretch activated ion channels which can be blocked by Gadolinium. The purpose of this experiment is to observe if mechanical stress affects the cardiac dynamics in cellular level and to investigate the different densities of fibroblast. To understand the cardiac dynamics under mechanical stress, we designed two types of mechanical stimulation: 1.) Sustain Stretching and 2.) Compression. Percentage change in the Inter-Beat Interval (IBI) and Beat Rate Variability (BRV) were computed. The result of this experiment shows that mechanical stretch does not affect the IBI and BRV for samples with high number of fibroblast. Gadolinium does not affect IBI and BRV when drug is added. Mechanical stress at 27˚C affects BRV and mechanical stress of low density fibroblast affects the IBI and BRV.

    Introduction…………………………………………………………………...1 1.1 Overview……………………………………………………….....1 1.2 Anatomy and Physiology of the Heart……………………………1 1.3 Cardiomyocytes, Fibroblast and Gap Junction……………………3 1.4 Synchronization of Cardiomyocytes………………………………8 1.5 Stretch Activated Ion Channels…………………………………..12 1.6 Temperature Effect……………………………………………….14 1.7 Previous Research on the Effects of Mechanical Stress………….14 1.7.1 Mechanically Induced Potential of Fibroblast……………..14 1.7.2 Stretching can induce Calcium Transient………………….15 1.7.3 Sino-Atrial (SA) node stretching reduced Heart Rate Variability………………………………………………….16 1.7.4 Cyclical Stretching maturates cardiomyocyte……………..17 1.7.5 Cyclical Mechanical Stretch Induced Vascular Endothelial Growth Factor……..………………………………………18 1.7.6 Cyclical Stretching affects Cardiomyocyte Cellular Organization……………………………………………….19 1.7.7 Effects of Periodic and Sustain Stretching in IBI and HRV.20 1.8 The Objective of the Research……………………………………21 Methodology…………………………………………………………………...22 2.1 Overview………………………………………………………….23 2.2 Preparation of Samples……………………………………...……23 2.2.A Cardiomyocytes and Fibroblast Preparation……………….23 2.2.B Decreasing the amount of Fibroblast………………………24 2.2.C Immunocytochemistry and Cell Counting…………………24 2.2.D Effects of Gadolinium……………………………………...26 2.3 The Whole System…………………………………………………..27 2.3.A The Set Up…………………………………………………27 2.3.B PID Temperature Controller……………………………….29 2.4 Calibration and Procedure………………………………………..…32 2.4.A Procedure for Stretching…………………………………...32 2.4.B Procedure for Compression and the Module for Compression……………………………………………….33 2.5 Image Analysis…………………....………………………………35 2.5.A Background Subtraction……………………………………35 2.6 Percentage Change of IBI and BRV………………………….…36 2.7 Statistical Analysis……………………………………………....37 2.7.1. P-value……………………………………………………..37 2.7.1.A. Welch’s T-test……………………………………38 Result.................……………………………………………………………….40 3.1 Overview………………………………………………………….40 3.2 Time Effect……………………………………………………….40 3.3 Effects of Mechanical Stress……………………………………...43 3.3.A. Time Dependence of IBI……………...…………………...43 3.3.B. Percentage Change in IBI and BRV of stretching are mostly negative for normal samples……………………………………...44 3.3.C Percentage Change in IBI and BRV of compression are mostly negative for normal samples……………………………...45 3.3.D Stretching of normal samples does not affect the IBI and BRV………………………………………………………………47 3.3.E Compression does not affect the IBI and BRV…………….49 3.4 Effects of Gadolinium…………………………………………….50 3.4.A 100μM Gadolinium does not affect the IBI and BRV……..51 3.4.B IBI increases insignificantly when 100μM Gadolinium is added……………………………………………………………...52 3.4.C Percentage Change in IBI and BRV of stretching and compression with Gadolinium are mostly positive……………….52 3.4.D Stretching of samples with Gadolinium does not affect the IBI and BRV……………………………………………………...54 3.4.E Compression of samples with Gadolinium does not affect the IBI and BRV……………………………………………………...55 3.5 Effects of Low Temperature……………………………………...56 3.5.A Percentage change of stretching and compression at 27˚C are mostly in the negative region……………………………………..56 3.5.B Stretching and Compression with Gadolinium reduces the percentage change in IBI…………………………………………58 3.5.C Stretching at 27˚C does not affect the IBI and but affects BRV………………………………………………………………60 3.5.D Compression at 27˚C does not affect the IBI but affects BRV………………………………………………………………61 3.5.E Stretching with Gadolinium at 27˚C does not affect the IBI and BRV…………………………………………………………..62 3.5.F Compression with Gadolinium at 27˚C does not affect the IBI and BRV…………………………………………………………..63 3.6 Immunocytochemistry reveals reduction of Fibroblast when treated with Ara-C………………………………………………………..65 3.7 Low Density Fibroblast compression and stretching……………..65 3.7.A IBI and BRV of N, F(-) and F(+)…………………………65 3.7.B Stretching and Compression of F(-) with and without Gadolinium decreases IBI, stretching decreases BRV, and compression increases BRV……………………………………...68 3.7.C Stretching and Compression of F(-) with and without 100μM Gadolinium does affect the IBI and BRV………………………...71 Discussion, Recommendation and Summary…………………..…................75 4.1 Discussion……………………………………………..…………….75 4.1.A Effects of Sustain Stretching and Compression……………76 4.1.B Effects of Gadolinium……………………………………...76 4.1.C Effects of Temperature……………………………………..77 4.1.D Effects of Low Density Fibroblast…………………………77 4.1.E Comparison of the result to review of related literature……78 4.2 Recommendation…………………………………………………….79 4.2.A Cell Type…………………………………………………...79 4.2.B Increase Number of Samples……………………………….79 4.2.C Scaffold Cyclical Stretching and Protein Characterization...79 4.2.D Development of Stretchable Multi-electrode Array………..79 4.2.E Different Percentage of Stretching…………………………80 4.3 Summary…………………………………………………………….80 Appendix A…………………………………………………………………….81 Appendix B………………………………………………………...…………..86 Appendix C……………………………………………...……………………..88 Appendix D…………………………………………………………………….89 Appendix E……………...……………………………………………………..90 Bibliography…...………………………………………………………………95

    [1] Betts, J. G. (2013). Anatomy & physiology. ISBN 1938168135. Retrieved
    1 August 2014.
    [2] Armstrong, William F., Ryan, Thomas; Feigenbaum, Harvey (2010).
    Feigenbaum's Echocardiography. Lippincott Williams & Wilkins. ISBN
    978-0-7817-9557-9.
    [3] Sherwood, L. (2012). Human Physiology, From Cells to Systems (8th
    [revised] ed.). Cengage Learning. ISBN 9781111577438.
    [4] Bers, D.M. (2002). Cardiac Excitation-Contraction Coupling.
    Nature.4115, 198-205.
    [5] Kohla, P., Borgb, T., & Camellitia, P. (2005). Structural and functional
    characterisation of cardiac fibroblasts. Cardiovascular Research 65, 40–
    51.
    [6] Fahrenbach J.P.& Banach, H.(2007). The relevance of non-excitable
    pacemaker for cardiac pacemaker function. J Physiol 585.2 (2007).565–
    578.
    [7] Rohr, S.(2004). Role of gap junctions in the propagation of the cardiac
    action potential. Cardiovascular Research 62,309 – 322.
    [8] Herve, J.C., Derangeon, M. (2012). "Gap-junction-mediated cell-to-cell
    communication". Cell and Tissue Research. 352: 21–31.
    [9] Yasuda, K. & Kaneko, T. (2010). On-chip constructive cell-Network study
    (I): Contribution of cardiac fibroblasts to cardiomyocyte beating
    synchronization and community effect. Journal of Nanobiotechnology. 9,1-
    12.
    [10] Yasuda, K., Kojima K & Tomoyuki, K. (2006). Role of the community
    effect of cardiomyocyte in the entrainment and reestablishment of stable
    beating rhythms. Biochemical and Biophysical Research Communications
    351,209–215.
    [11] Lumpkin, Ellen A.; Caterina, Michael J. (2006). "Mechanisms of sensory
    transduction in the skin". Nature. 445 (7130): 858–865.
    [12] Guharay, F. & Sachs, F. (1984). Stretch-Activated Single Ion Channel
    Currents in Tissue Cultured Embryonic Chick Skeletal Muscle. The Journal
    of Physiology. 352.1.685-701.
    [13] Leem, C.H. et.al. (2008). Stretch-activated currents in cardiomyocytes
    isolated from rabbit pulmonary veins. Progress in Biophysics and
    Molecular Biology 97.217–231.
    [14] Stefan F. J. Langer, Manfred Lambertz, Peter Langhorst, Hanno D. Schmidt
    (1999). Interbeat interval variability in isolated working rat hearts at
    various dynamic conditions and temperatures. Res Exp Med. 199:1–19.
    [15] J.C.HERVE, K.YAMAOKA, V. W. TWIST, T. POWELL, J. C. ELLORY,
    AND L. C. H. WANG (1992). Temperature dependence of
    electrophysiological properties of guinea pig and ground squirrel
    myocytes. Am J Physiol Regulatory Integrative Comp Physiol, 263:177-
    184.
    [16] Kiseleva I, Kamkin A, Pylaev A, Kondratjev D, Leiterer KP, Theres H, et
    al. (1998). Electrophysiological properties of mechanosensitive atrial
    fibroblasts from chronic infarcted rat heart. J Mol Cell Cardiology.
    30:1083–93.
    [17] Kamkin A, Kiseleva I,Wagner KD, Lammerich A, Bohm J, Persson PB, et
    al. (1999). Mechanically induced potentials in fibroblasts from human right
    atrium. Exp Physiology. 84:347–56.
    [18] Rohr, S., Kucera, J.P. et. al. (2000). Power-Law Behavior of Beat-Rate
    Variability in Monolayer Cultures of Neonatal Rat Ventricular Myocytes.
    Cellular Biology. 86:1140-1145.
    [19] Weckström, M., Han, C. & Tavi, P. (1998). Mechanisms of Stretch-Induced
    Changes in [Ca21]i in Rat Atrial Myocytes Role of Increased Troponin C
    Affinity and Stretch-Activated Ion Channels. Circulation Research.
    83:1165-1177.
    [20] Horner, S. M., et al. (1996). Contribution to Heart Rate Variability by
    Mechanoelectric Feedback Stretch of the Sinoatrial Node Reduces Heart
    Rate Variability. Circulation 94.7:1762-1767.
    [21] Li, R.K., Mihic, A. Miyagi, Y. et. al. (2014). The effect of cyclic stretch on
    maturation and 3D tissue formation of human embryonic stem cell-derived
    cardiomyocytes. Biomaterials. 35: 2798-2808.
    [22] http://www.mathworks.com/help/stats/ttest2.html
    [23] https://www.mathworks.com/help/stats/kstest.html
    [24] Ramalingam A1, Hirai A & Thompson EA. (1997). Glucocorticoid
    inhibition of fibroblast proliferation and regulation of the cyclin kinase
    inhibitor p21Cip1. Molecular Endocrinology. 11(5):577-86.
    [25] Ziaeie, B. Wei, P. et. al. (2011). Stretchable multi-electrode array using
    room-temperature liquid alloy interconnects. Journal of Micromechanics
    and Microengineering.
    [26] Dhein, S., Mohr, F.W. et. al. (2014). Mechanical control of cell biology.
    Effects of cyclic mechanical stretch on cardiomyocyte cellular
    organization. Progress in Biophysics and Molecular Biology 115 (2014)
    93e102.
    [27] Leychenko A, Konorev E, Jijiwa M, Matter ML (2011) Stretch-Induced
    Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult
    Cardiomyocytes. PLoS ONE 6(12): e29055.
    doi:10.1371/journal.pone.0029055
    [28] Liu, Minzhen (2016). Effects of Periodic and Sustained Stretching on
    Cardiac Culture, Master’s Thesis, Graduate Institute of Biophysics, Chung
    Li.
    [30] https://en.wikipedia.org/wiki/P-value
    [31] https://en.wikipedia.org/wiki/Cardiopulmonary_resuscitation
    [32] http://www.cvphysiology.com/Cardiac%20Function/CF022
    [34] Yue L, Xie J, Nattel S. (2011). Molecular determinants of cardiac
    fibroblast electrical function and therapeutic implications for atrial
    fibrillation. Cardiovasc Res ;89:744–53.

    QR CODE
    :::