| 研究生: |
王一大 Ita Wang |
|---|---|
| 論文名稱: |
含氫非晶質碳薄膜的拉曼光譜特性研究 Characteristics of Raman Spectra of Hydrogenated Amorphous Carbon Films |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 拉曼光譜 、非晶質碳薄膜 、穿透率 、光學能隙 |
| 外文關鍵詞: | transmittance, optical gap, amorphous carbon film, Raman spectrum |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用拉曼光譜儀及近紅外光-可見光-紫外光(UV-VIS-NIR)光譜儀,來研究以電漿輔助化學氣相沉積 (Plasma Enhanced Chemical Vapor Deposition,PECVD) 方式,製成的含氫非晶質碳(hydrogenated amorphous carbon)薄膜樣品之拉曼光譜、可見光穿透率等特性。我們實驗用的樣品,是由三種反應氣體(Precursor Gas)[ C6H6 、HMDS (六甲基二矽氮烷,分子式為C6H18Si2NH)、HMDSO(六甲基二矽氧烷,分子式為C6H18Si2O)],以不同比例、不同鍍膜時間(Deposition Time) 製造而成的。由實驗結果我們發現:以C6H6為反應氣體的樣品,其碳的sp2鍵結(石墨的結構)含量最多,故可見光穿透率最小(鍍膜時間為90min時的平均光穿透率約為10%);以HMDS為反應氣體的樣品,其碳的sp2鍵結(石墨的結構)含量最少,故可見光穿透率最大(鍍膜時間為90min時的平均光穿透率約為60%)。以C6H6為反應氣體的樣品的相對光學能隙最小[平均值約為1.0(ev)],而以HMDS為反應氣體的樣品的相對光學能隙則是最大[平均值約為2.1(ev)]。三種樣品(以HMDS為反應氣體的樣品、以HMDSO為反應氣體的樣品、以HMDS+HMDSO為反應氣體的樣品)的光學能隙和被扭曲的碳的sp3鍵結含量,皆會隨著鍍膜時間的增加(由60min到90min)而增加。
In this thesis,we use mainly the Raman spectroscopy and UV-VIS-NIR spectroscopy to study the characteristics of hydrogenated amorphous carbon thin films which are made by the Plasma Enhanced Chemical Vapor Deposition (PECVD) method. These films were made in different ratios of precursor gas[C6H6 ,HMDS(C6H18Si2NH) and HMDSO(C6H18Si2O)] and deposition time(30min,60min,and 90min).The experimental results are as follows: films which use C6H6 as its precursor gas contain most sp2 bondings of carbon,as a result, have the lowest transmittance of visual light(the average transmittance is about 10% in deposition time of 90min); films which use HMDS as its precursor gas contain least sp2 bondings of carbon,as a result, have the highest transmittance(the average transmittance is about 60% in deposition time of 90min). Films which use C6H6 as its precursor gas have the smallest relative optical gap[the average value is about 1.0 (e.v.)],and films which use HMDS as its precursor gas have the largest relative optical gap[the average value is about 2.1 (e.v.)].Films which use HMDS,HMDSO,and HMDS+HMDSO respectively as its precursor gas have both its relative optical gap and sp3 bondings of carbon increased as deposition time increases.
1.F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf,“Man-Made Diamonds.Nature”, 51-55,176(4471)(1955).
2.A. Grill, “Electrical and optical properties of diamond-like carbon Thin Solid Films”, 189-193 ,355–356(1 ) (1999).
3.J. Robertson ,“Electronic structure of diamond-like carbon”,Diamond and Related Materials, 212-218,6(2-4) (1997).
4.L.Y. Huang, J. Lu, and K.W. Xu, “Investigation of the relation between structure and mechanical properties of hydrogenated diamond-like carbon coatings prepared by PECVD”. Materials Science and Engineering A,45-53 373(1-2) (2004).
5.G. Reisel, B. Wielage, S. Steinhäuser and H. Hartwig,“DLC for tools protection in warm massive forming”, Diamond Relat. Mater., 1024-1029 12(3-7) (2003).
6.G. Dearnaley. and J.H. Arps, “Biomedical applications of diamond-like carbon (DLC) coatings: A review”,Surface and Coatings Technology, 2518-2524 ,200(7) (2005).
7.V.G. Litovchenko. and N.I. Klyui,“Solar cells based on DLC film – Si structures for space application”,Sol. Energy Mater. Sol. Cells,55-70, 68(1) (2001).
8.A. Erdemir,“The role of hydrogen in tribological properties of diamond-like carbon films”,Surface and Coatings Technology, 292-297,146-147(2001).
9.A. Tibrewala, E. Peiner, R. Bandorf , S. Biehl, H. Lüthje, “Transport and optical properties of amorphous carbon and hydrogenated amorphous carbon films”, Applied Surface Science,5387-5390, 252(15) ( 2006).
10.A.C. Ferrari. and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”,Physical Review B,14095-14107, 61(20) ( 2000).
11.F. Tuinstra and J.L. Koenig,“Raman Spectrum of Graphite”,Journal of Chemical Physics, 1126-1130, 53(3)(1970).
12.摘自輔仁大學之“高等光學實驗手冊”
13.D. Mardare, M. Tasca, M. Delibas, G.I. Rusu,“On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films”,Applied Surface Science, 200-206,156(1-4) (2000).
14. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, “Electrical and Optical-Properties of Tio2 Anatase Thin-Films”,Journal of Applied Physics,2042-2047,75(4) (1994).
15.T.C. Chieu, M.S. Dresselhaus, and M. Endo,“Raman Studies of Benzene-Derived Graphite Fibers”,Physical Review B, 5867-5877,26(10) (1982).
16.L.Y. Chen and F.C.N. Honga,“Diamond-like carbon nanocomposite films”. Applied Physics Letters, 3526-3528,82(20)( 2003).
17.M.A. Tamor and W.C. Vassell,“Raman Fingerprinting of Amorphous-Carbon Films”,Journal of Applied Physics, 3823-3830, 76(6) (1994).
18.T. Kobayashi, T. Hirajima, Y. Hiroi and M. Svojtka,“Determination of SiO2 Raman spectrum indicating the transformation from coesite to quartz in Gföhl migmatitic gneisses in the Moldanubian Zone, Czech Republic”,Journal of Mineralogical and Petrological Sciences ,105-111,103(2008).
19.M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles”, Appl. Phys. Lett., 3114-3116, 62(1993).
20.L.C. Nistor, J.V. Landuyt, V.G. Ralchenko, E.D. Obraztsova and A.A. Smolin.,“Nanocrystalline diamond films: Transmission electron microscopy and Raman spectroscopy characterization”, Diamond and Related Materials, 159-168, 6(1) (1997).