| 研究生: |
張為楷 Wei-Kai Chang |
|---|---|
| 論文名稱: |
使用新合成方法製備以二苯并五噻吩為核心結構的電洞傳輸材料並應用於鈣鈦礦太陽能電池 Dibenzoquinquethiophene-Based Hole Transporting Materials: New Synthesis, Properties, and Applications in Perovskite Solar Cells. |
| 指導教授: |
劉青原
Ching-Yuan Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 電洞傳輸材料 、鈣鈦礦太陽能電池 、碳氫鍵芳香環化反應 、二苯并五噻吩 |
| 外文關鍵詞: | Hole-transporting materials, Perovskite solar cells, C-H arylation, Dibenzoquinquethiophene |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來太陽能電池的研究隨著能源短缺逐漸受到重視,其中鈣鈦礦太陽能電池 (perovskite solar cells, PSCs) 被視為最具有發展潛力的一種,該電池是由多層光電材料如三明治堆疊而成,其中的電洞傳輸材料可協助拆解電子電洞對並傳遞電洞,對於提升效率上扮演至關重要的角色,尋找低成本高效率的電洞傳輸材料是許多團隊的研究目標。
本文利用鈀催化直接碳氫鍵芳香環化反應做為關鍵反應,快速的合成一系列以二苯併五噻吩 (dibenzoquinquethiophene, DBQT)、蒽併四噻吩 (tetrathienoanthracene, TTA) 以及咔唑併四噻吩 (tetrathienocarbazole, TTC) 作為核心結構,三苯胺衍生物作為末端基,並在兩者之間插入3,4-乙烯二氧噻吩 (3,4-ethylenedioxythiophene, EDOT) 做為π架橋的電洞傳輸材料,並針對其熱性質、電化學性質、光學性質與元件效率做一系列的探討與評估。
本研究所使用的鈀催化直接碳氫鍵芳香環化反應比起傳統人名反應具有降低成本、節省步驟以及不需使用劇毒的有機錫試劑等優點。本次研究共開發出八種新型的電洞傳輸材料,其中兩種應用於鈣鈦礦太陽能電池具有優異的表現:
(1) 電洞傳輸材料WKC01在添加摻雜劑時可達到16.1 %的光電轉換效率,更可以在不添加摻雜劑的情況下達到14.8 %的光電轉換效率並維持長時間的穩定性。
(2) 另一個表現優異的電洞傳輸材料WKC02,可在添加摻雜劑時達到16.3 %的光電轉換效率,在不添加摻雜劑的情況下也可達到15.4 %的光電轉換效率。
In recent years, the research of the solar cell has been valued gradually due to the shortage of energy. Among them, perovskite solar cells (PSCs) is regarded as the most potential one. The hole-transporting material (HTM) is the most important part of the perovskite solar cell (PSC). Designing a hole-transporting material with high power conversion efficiency (PCE) and low cost is many teams’ concerns.
In this work, we have synthesized dibenzoquinquethiophene (DBQT) -based hole-transporting materials by using Pd-catalyzed direct C-H arylation as the key step. We assign dibenzoquinquethiophene as central core, 3,4-ethylenedioxythiophene (EDOT) as π-linker and triphenylamine as the end group. Detailed characterizations and comparisons of the thermal property, electrochemical property, optical property and device efficiency were conducted.
We provide three new dibenzoquinquethiophene (DBQT) core-based hole-transporting materials (WKC01, WKC02 and WKC03). Remarkable power conversion efficiency has achieved 16.1 % by using WKC01 as HTM, with the usage of two chemical doping agents. Moreover, WKC01-based dopant-free solar cells have shown 14.8 % of PCE and have maintained long-term stability. The second HTM WKC02, which has t-butyl groups as functional groups, shows 16.3 % of PCE with the dopants and 15.4 % of PCE under the dopant-free condition.
[1] Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; lrie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; Yamamoto, D. Nat. Energy 2017, 2, 17032.
[2] National Renewable Energy Laboratory (NREL). Best researchcell Efficiency chart; https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf
[3] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[4] Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591-597.
[5] Saliba, M.; Correa-Baena, J.-P.; Grätzel, M.; Hagfeldt, A.; Abate, A. Angew. Chem., Int. Ed. 2018, 57, 2554-2569.
[6] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982-988.
[7] Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 2015, 347, 967-970.
[8] D'Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Nat. Commun. 2014, 5, 3586-3591.
[9] Kazim, S.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Angew. Chem., Int. Ed. 2014, 53, 2812-2824.
[10] Zhao, L.; Kerner, R. A.; Xiao, Z.; Lin, Y. L.; Lee, K. M.; Schwartz, J.; Rand, B. P. ACS Energy Lett. 2016, 1, 595-602.
[11] Zuo, C.; Ding, L. Small 2015, 11, 5528-5532.
[12] Arora, N.; Dar, M. I.; Hinderhofer A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.; Grätzel, M. Science 2017, 358, 768-771.
[13] Akin, S.; Liu, Y.; Dar, M. I.; Zakeeruddin, S. M.; Grätzel, M.; Turan, S.; Sonmezoglu, S. J. Mater. Chem. A 2018, 6, 20327-20337.
[14] Huckaba, A. J.; Gharibzadeh, S.; Ralaiarisoa, M.; Roldán-Carmona, C.; Mohammadian, N.; Grancini, G.; Lee, Y.; Amsalem, P.; Plichta, E. J.; Koch, N.; Moshaii, A.; Nazeeruddin, M. K. Small Methods 2017, 1, 1700250.
[15] Huckaba, A. J.; Sanghyun, P.; Grancini, G.; Bastola, E.; Taek, C. K.; Lee, Y.; Bhandari, K. P.; Ballif, C.; Ellingson, R. J.; Nazeeruddin, M. K. ChemistrySelect 2016, 1, 5316-5319.
[16] Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok S. Science 2017, 356, 1376-1379.
[17] Jiang, T.; Chen, Z.; Chen, X.; Chen, X.; Xu, X.; Liu, T.; Bai, L.; Yang, D.; Di, D.; Sha, W. E. I.; Zhu, H.; Yang, Y. M. ACS Energy Lett. 2019, 4, 1784-1790.
[18] Usluer, Ö.; Abbas, M.; Wantz, G.; Vignau, L.; Hirsch, L.; Grana, E.; Brochon, C.; Cloutet, E.; Hadziioannou, G. ACS Macro Lett. 2014, 3, 1134-1138.
[19] Boldyreva, A. G.; Zhidkov, I. S.; Tsarev, S.; Akbulatov, A. F.; Tepliakova, M. M.; Fedotov, Y. S.; Bredikhin S. I.; Postnova, E. Y.; Luchkin, S. Y.; Kurmaev, E. Z.; Stevenson, K. J.; Troshin, P. A. ACS Appl. Mater. Interfaces 2020, 12, 19161-19173.
[20] Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Baena-Correa J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grӓtzel. M. Energy Environ. Sci. 2016, 9, 1989-1997.
[21] Snaith, H. J.; Grӓtzel. M. Appl. Phys. Lett. 2006, 89, 262114.
[22] Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011-1065.
[23] Wu, Y.; Wang, Z.; Liang, M.; Cheng, H.; Li, M.; Liu, L.; Wang, B.; Wu, J.; Ghimire, R. P.; Wang, X.; Sun, Z.; Xue, S.; Qiao, Q. ACS Appl. Mater. Interfaces 2018, 10, 17883-17895.
[24] Peng, Y.-K.; Lee, K.-M.; Ting, C.-C.; Hsu, M.-W.; Liu, C.-Y. J. Mater. Chem. A, 2019, 7, 24765-24770.
[25] Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.- H.; De Angelis, F.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Graetzel, M.; Nazeeruddin, M. K. Nat. Energy 2016, 1, 15017-15023.
[26] Connell, A.; Wang, Z.; Lin, Y.-H.; Greenwood, P. C.; Wiles, A. A.; Jones, E. W.; Furnell, L.; Anthony, R.; Kershaw, C. P.; Cooke, G.; Snaith, H. J.; Holliman, P. J. J. Mater. Chem. C 2019, 7, 5235-5243.
[27] Wang, J.; Xu, H.; Li, B.; Cao, X.-P.; Zhang, H.-L.; Tetrahedron 2012, 68, 1192-1197.
[28] Zimmermann, I.; Urieta-Mora, J.; Gratia, P.; Aragó, J.; Grancini, G.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K. Adv. Energy Mater. 2017, 7, 1601674.
[29] Li, Y.; Scheel, K. R.; Clevenger, R. G.; Shou, W.; Pan, H.; Kilway, K. V.; Peng, Z. Adv. Energy Mater. 2018, 8, 1801248.
[30] Juarez-Perez, E. J.; Leyden, M. R.; Wang, S.; Ono, L. K.; Hawash, Z.; Qi, Y. Chem. Mater. 2016, 28, 5702-5709.
[31] Xi, H.; Tang, S.; Ma, X.; Chang, J.; Chen, D.; Lin, Z.; Zhong, P.; Wang, H.; Zhang, C. ACS Omega 2017, 2, 326-336.
[32] Li, W.; Dong, H. Wang, L. Li, N. Guo, X. Li, J. Qiu, Y. J. Mater. Chem. A, 2014, 2, 13587
[33] Leguy, A. M.; Hu, Y.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Schilfgaarde, M. V.; Weller, M. T.; Bein, T.; Nelson, J.; Docampo, P.; Barnes, P. R. F. Chem. Mater. 2015, 27, 3397-3407.
[34] Rojas, D. E. M.; Cho, K. T.; Zhang, Y.; Urbani, M.; Tabet, N.; de la Torre, G.; Nazeeruddin, M. K.; Torres, T. Adv. Energy Mater. 2018, 8, 1800681.
[35] 國立中央大學化材所,2019年呂玲慧之碩士論文。
[36] Urieta-Mora, J.; Zimmermann, I.; Aragó, J.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K. Chem. Mater. 2019, 31, 6435-6442.
[37] Vachhani, D. D.; Sharma, A.; Eycken, E. V. D. J. Org. Chem. 2012, 77, 8768−8774.
[38] Grisorio, R.; Marco, L. D.; Baldisserri, C.; Martina, F.; Serantoni, M.; Gigli, G.; Suranna, G. P. ACS Sustainable Chem. Eng. 2015, 3, 770−777.
[39] Chang, Y.-C.; Lee, K.-M.; Ting, C.-C.; Liu, C.-Y. Mater. Chem. Front. 2019, 3, 2041-2045.
[40] Steck, C.; Franckevicius, M.; Zakeeruddin, S. M.; Mishra, A.; Bauerle, P.; Grätzel, M. J. Mater. Chem. A 2015, 3, 17738-17746.
[41] (a) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496-16497. (b) Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826-1834.
[42] Lu, T.-J.; Lin, P.-H.; Lee, K.-M.; Liu, C.-Y. Eur. J. Org. Chem. 2017, 2017, 111-123.
[43] Zhao, L.; Qiu, L.; Xia, D.; Liu, S.; Yi, X.; Fan, J.; Lin, K.; Fan, R.; Guo, Y.; Yang, Y. ACS Appl. Energy Mater. 2019, 2, 8173-8180.
[44] Torres, A.; Rego, L. G. C. J. Phys. Chem. C 2014, 118, 26947-26954.
[45] Chang, Y.-C.; Lee, K.-M.; Lai, C.-H.; Liu C.-Y. Chem. Asian J. 2018, 13, 1510-1515.
[46] (a) Fuse, S.; Sugiyama, S.; Maitani, M. M.; Wada, Y.; Ogomi, Y.; Hayase, S.; Katoh, R.; Kaiho, T.; Takahashi, T. Chem. Eur. J. 2014, 20, 10685-10694. (b) Kim, S. H.; Choi, J.; Sakong, C.; Namgoong, J. W.; Lee, W.; Kim, D. H.; Kim, B.; Ko, M. J.; Kim, J. P. Dyes Pigm. 2015, 113, 390-401.
[47] Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877-910.