| 研究生: |
黃祥鳴 Hsiang-Ming Huang |
|---|---|
| 論文名稱: |
利用微卡計探討疏水作用對於蛋白質與吸附基材之交互作用機制以及蛋白質溶液行為之影響 The microcalorimetric study of the contributions of hydrophobic interaction effect: the protein bindingmechanisms between proteins and resins,and the protein solution behaviors |
| 指導教授: |
陳文逸
Wen-Yih Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 蛋白質特性 、稀釋焓量測 、鍵結機構 、疏水交互作用 、生物辨識 、月生月太 鏈長 |
| 外文關鍵詞: | Dilution enthalpy measurement, Protein characteristics, Binding mechanism, Hydrophobic interaction, Biorecognition, Peptide chain length |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在生物辨識的相關程序當中,疏水作用扮演關鍵的角色,而疏水作用易受環境因子影響而改變,因此可能使得生物分子鍵結行為有所不同。為了探討不同條件下,疏水作用對生物辨識系統的影響,因此本研究從簡單的model systems著手,討論疏水作用對於蛋白質鍵結程序的貢獻,並且期望藉由鍵結作用機制的分析,提供研究生物辨識上基礎熱力學的資訊,以用來解釋溶液中蛋白質分子的行為。本研究針對幾個較少被探討的因子,例如:溫度、疏水鏈長以及與溶液分子作用的貢獻來進行討論,我們利用恆溫微卡計直接量測蛋白質和疏水基材的反應焓,量測蛋白質以及月生 月太 的稀釋熱,配合等溫吸附線的分析推求出相關的熱力學參數,以了解疏水作用對蛋白質和基材的交互作用貢獻,以及對蛋白質溶液行為的影響,在研究中的三大主題將可分為五個部分來進行討論:
(1) 對於蛋白質和基材間疏水交互作用的研究當中,我們選擇兩種分子量相似、等電點相近的蛋白質(α-Chymotrypsinogen A和Trypsinogen)進行分析。結果顯示提高溫度會影響較疏水的α-Chymotrypsinogen A和Butyl-Sepharose之間吸附機構,使吸附程序由adsorption-dominated binding process轉變為partition-dominated binding process,但對於Trypsinogen來說,溫度的貢獻僅造成蛋白質吸附力的增加。蛋白質稀釋熱研究中指出α-Chymotrypsinogen A是溫度敏感的蛋白質。
(2) 為更了解溫度對蛋白質鍵結程序的影響,我們選擇三種蛋白質(Lysozyme、α-amylase、Myoglobin)和兩種疏水基材(Butyl-Sepharose、Octyl-Sepharose)進行蛋白質鍵結機構的研究。我們一併討論鹽效應、觸手疏水鏈長效應、蛋白質特性和溫度效應的影響,我們發現鹽類、觸手疏水鏈長和溫度的增加,都會造成蛋白質和基材間疏水作用增強,這些都是由於分子間疏水交互作用面積增加所致。溫度效應方面,因溫度升高而降低水溶液的極性,並造成蛋白質結構調整而使得表面水合狀態改變,則是造成蛋白質吸附機構不同的主因。
(3) 由於疏水作用在離子交換層析系統中也具有貢獻,因此我們選擇兩種蛋白質(Lysozyme、Myoglobin)和三種商用陽離子交換樹脂(CM-Sepharose、SP-Sepharose、Source-30S),對蛋白質鍵結機構進行研究,我們討論pH影響、鹽效應、觸手和基質效應和蛋白質特性的影響,並以scatchard plot和Freundlich-Langmuir model來分析蛋白質的吸附模式。我們發現高pH值時,蛋白質和膠體之間的疏水作用影響吸附程序,此時鹽效應的貢獻將促進蛋白質吸附;而低pH值則由於靜電作用的影響較大,因此鹽效應減少蛋白質的吸附親和力。此外,研究發現Source-30S是疏水的膠體,且其較親水的觸手和強疏水性的基質的貢獻分別造成不同吸附程序下蛋白質和基材間都具有最強的鍵結作用。
(4) 為了解月生月太 鏈中芳香族疏水胺基酸對疏水交互作用的貢獻,我們設計不同Tryptophan鏈長的月生月太 (Gly-Trp-Gly:GWG、Gly-Trp-Trp-Gly:GWWG、Gly-Trp-Trp-Trp-Gly:GWWG)進行初步的研究。我們發現GWG和疏水基材有最強的吸附且其稀釋熱為吸熱,而GWWG或GWWWG和疏水基材的吸附則相對較低,且其稀釋為放熱行為,這是由於月生月太 上tryptophan的增加使月生月太 和溶液分子的cation-π interaction增強所致。另外,在月生月太 和帶電基材的吸附實驗當中,我們發現當tryptophan增加到三個時(GWWWG),由於月生月太 和基材間的疏水作用貢獻超越靜電作用的貢獻,而使得吸附機構轉變為疏水作用主導。
(5) 為了解蛋白質溶液行為,我們探討不同蛋白質濃度、鹽濃度、pH值下溶菌酉每 的稀釋熱,我們發現在溶菌酉每 濃度25g/L時,蛋白質之間有強作用力而使得稀釋為energy unfavorable。當增加鹽濃度或是調整溶液pH值使其接近等電點時,由於蛋白質間靜電斥力減少使得稀釋的吸熱量增加。對於較低濃度5g/L而言,蛋白質之間存在的靜電斥力則是造成蛋白質稀釋為放熱的主因,而鹽類的貢獻在於遮蔽分子間的靜電斥力。對於更低濃度0.5g/L而言,稀釋焓仍然是負值,但沒有發現明顯的鹽效應,這表示在此稀釋過程中,蛋白質和溶液的交互作用較蛋白質分子間的作用來的重要。
藉由相關的熱力學分析,我們可以清楚了解不同環境因子對於蛋白質鍵結行為和機構的影響,這些討論對於研究蛋白質吸附行為有相當的幫助,研究結果可以提供生物辨識作用方面的基礎資訊。
Abstract
To understand the roles of hydrophobic interaction in the biorecognition system, we studied the simple model systems of hydrophobic interaction between protein and interaction surface in this investigation. We discussed the effects of environment factors such as temperature, hydrophobic chain length and the contribution of solution molecules in the hydrophobic interaction between biomolecules. By the thermodynamic analysis, we estabished an interaction mechanism to explain the protein-resin and protein-protein interaction behavior in solution. As summary, we divide into five related topics as following:
(1) In the study of hydrophobic interaction between protein and matrix, we studied two kinds of proteins with similar molecule weight and at nearly isoelectrical point (α-Chymotrypsinogen A and Trypsinogen) of solution. Results showed that the increasing temperature significantly influence the binding mechanism of α-Chymotrypsinogen A with Butyl-Sepharose from an adsorption-dominated binding process to a partition-dominated binding process because α-Chymotrypsinogen A is a temperature sensitive protein. Evidences showed in the dilution enthalpy measurements confirmed this suggestion.
(2) To understand the contribution of temperature effect on protein binding process, we chose proteins (Lysozyme、α-amylase、Myoglobin) and hydrophobic resins (Butyl-Sepharose、Octyl-Sepharose) to study the protein binding mechanism. We discussed the effects of salt, ligand chain length, protein characteristics, temperature and so on. Results showed that the increased salt concentration, hydrophobic ligand chain length and temperature promote the hydrophobic interaction between proteins and resins because the increased hydrophobic interaction regions between these suspended reactants.
(3) We selected proteins (Lysozyme、Myoglobin) and cation resins (CM-Sepharose、SP-Sepharose、Source-30S) to study the contributons of hydrophobic interaction between ligand and protein in IEC system. We studied the effect of pH, salt, ligand and matrix, protein characteristics by ITC and isotherm experiments. We also utilized scatchard plot and Freundlich-Langmuir model to analyze the protein-binding model. In higher pH solution condition, results showed that the hydrophobic interaction between proteins and resins could significantly influence the protein binding process and the protein binding affinity was promoted by salt effect. In contrast, the electrostatic interaction dominated the protein binding process in lower pH solution condition and the increased salt concentration decreased the protein binding affinity. Moreover, we revealed that Source-30S, which has the most hydrophilic ligand and the most hydrophobic aromatic matrix, could make stronger hydrophobic interaction with protein in different solution conditions.
(4) To study the effect of aromatic ligand chain length in the peptide-resin binding process, we designed three kinds of peptides with different tryptophan chain length (Gly-Trp-Gly:GWG、Gly-Trp-Trp-Gly:GWWG、Gly-Trp-Trp-Trp-Gly:GWWG). Results showed that GWG has stronger binding affinity with hydrophobic resins, and the dilution of GWG is an endothermic reaction. In contrast, the dilutions of GWWG or GWWWG are exothermic reactions. This is because the increased tryptophan on the peptides increase the cation-π between peptide and solution molecules. Furthermore, we demonstrated that the hydrophobic interaction between GWWWG and CM-Sepharose dominated the peptide binding process whereas GWG and GWWG interact with CM-Sepharose is a electrostatic dominated binding process.
(5) We also discussed the protein solution dilution behaviors in varied lysozyme concentration. At higher protein concentration (25g/L), we found that the stronger protein-protein interactions make an energy unfavorite protein dilution reaction. In contrast, the dilution of lysozyme at lower protein concentration (5g/L) is an exothermic reaction because the existence of electrostatic repulsion between protein molecules. Furthermore, we observed the decreased electrostatic repulsion between protein molecules at higher salt concentration could result in the increased protein dilution enthalpy.
In this investigation, we studied the protein solution behavior and protein binding mechanism in varied solution conditions by thermodynamic analysis. The results and discussions provide useful knowledge to understand the protein binding behaviors in solution and fundamental thermodynamic information in biorecognition system.
參考文獻
[1] Radaev, S. and Sun, P., “Recognition of immunoglobulins by Fc receptors”, Mol. Immunol. 38 (2001) 1073.
[2] Savage, P.B., Li, C., Taotafa, U., Ding, B. and Guan, Q., “Antibacterial properties of cationic steroid antibiotics”, FEMS Micro. Biol. Lett. 217 (2002) 1.
[3] 莊文喜, Surface Characterization and Blood Compatibility Studies of Variation Functional Groups of Self Assembled Monolayer, 成大化工所碩士論文 , 1997
[4] 江大勳, “The effect of hydrophilic/hydrophobic ratio on polyurethanes blood compatibility”, 台灣科大化工所碩士論文 , 1994
[5] 鍾宜璋, “Study of the preparation of polymer membranes and their applications on the biomedical materials”, 成大化工所碩士論文, 1995
[6] Wang, S.S.S., Rymer, D.L. and Good, T.A., “Reduction in cholesterol and sialic-acid content protects cells from the toxic effects of beta-amyloid peptides”, J. Biol. Chem. 276 (2001) 42027.
[7] Lin, F.Y., Chen, C.S., Chen, W.Y. and Yamamoto, S., “Microcalorimetric studies of the interaction mechanisms between proteins and Q-sepharose at pH near the isoelectric point (pI) effects of NaCl concentration , pH value , and temperature”, J. Chromatogr. A 912 (2001) 281.
[8] Takano, K., Yamagata, Y., Funahashi, J., Hioki, Y., Kuramitsu, S. and Yutani, K., “Contribution of intra- and intermolecular hydrogen bonds to the conformational stability of human lysozyme”, Biochemistry 38 (1999) 12698.
[9] Dill, K.A., “Dominant forces in protein folding”, Biochemistry, 29 (1990) 7133.
[10] Shaltiel, S., “Hydrophobic chromatography”, Methods Enzymol. 104 (1984) 69.
[11] Kronman, M.J., “Metal-ion binding and the molecular conformational properties of alpha-lactalbumin”, Crit. Rev. Biochem. Mol. Biol. 24 (1989) 565
[12] Ellgaard, L., Molinari, M. and Helenius, A., “Setting the standards: quality control in the secretory pathway”, Science 286 (1999) 1882.
[13] Roberts, D.L., Weix, D.J., Dahms, N.M. and Kim, J.J.P., “Molecular-basis of lysosomal-enzyme recognition - 3-dimensional structure of the cation-dependent mannose 6-phosphate receptor”, Cell 93 (1998) 639.
[14] Gerhard, M., Lehn, N., Neumayer, N., Borén, T., Rad, R., Schepp, W., Miehlke, S., Classen, M. and Prinz, C., “Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin”, Proc. Natl. Acad. Sci. USA 96 (1999) 12778.
[15] Mulvey, M.A., Schilling, J.D., Martinez, J.J. and Hultgren, S.J. “From the Cover: Bad bugs and beleaguered bladders: Interplay between uropathogenic Escherichia coli and innate host defenses”, Proc. Natl. Acad. Sci. USA 97 (2000) 8829.
[16] Cummings, M.D., Ling, H., Armstrong, G.D., Brunton, J.L. and Read, R.J., “Modeling the carbohydrate-binding specificity of pig edema toxin”, Biochemistry 37 (1998) 1777.
[17] Brightbill, H.D., Libraty, D.H., Krutzik, S.R., Yang, R.B., Belisle, J.T., Bleharski, J.R., Maitland, M., Norgard, M.V., Plevy, S.E., Smale, S.T., Brennan, P.J., Bloom, B.R., Godowski, P.J. and Modlin, R.L. “Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors” Science 285 (1999) 732.
[18] Chen, W.Y., Chen, C.S. and Lin, F.Y., “Molecular recognition in imprinted polymers: thermodynamic investigation of analyte binding using microcalorimetry”, J. Chromatogr. A 923 (2001) 1.
[19] Ceccaroli, P., Cardoni, P., Buffalini, M., Bellis, R.D., Piccoli, G. and Stocchi, V., “Separation of hexokinase activity using different hydrophobic interaction supports”, J. Chromatogr. B 702 (1997) 41.
[20] Queiroz, J.A., Tomaz, C.T. and Cabral, J.M.S., “Hydrophobic interaction chromatography of proteins”, J. Biotechnol. 87 (2001) 143.
[21] Goheen, S.C. and Engelhorn, S.C., “Hydrophobic interaction high-performance liquid chromatography of proteins”, J. Chromatogr. 317 (1984) 55.
[22] Ingraham, R.H., Lau, S.Y.M., Taneja, A.K. and Robert S., “Denaturation and the effects of temperature on hydrophobic-interaction and reversed-phase high-performance liquid chromatography of proteins”, J. Chromatogr. 327 (1985) 77.
[23] Karsnas, P. and Lindblom, T., “Characterization of hydrophobic interaction and hydrophobic interaction chromatography media by multivariate”, J. Chromatogr. 599 (1992) 131.
[24] Fausnaugh, J.L., Fannkoch, E.P., Gupta, S. and Regnier, F.E., “High-performance hydrophobic interaction chromatography of proteins”, Anal. Biochem. 137 (1984) 464.
[25] Purcell, A.W., Aguilar, M.I. and Hearn., M.T.W., “High-performance liquid chromatography of amino acids , peptides and proteins cxv. thermodynamic behaviour of peptides in reversed phase chromatography”, J. Chromatogr. 593 (1992) 103.
[26] Cole, L.A. and Dorsey, J.G., “Temperature dependence of retention in reversed-phase liquid chromatography. 1. stationary-phase considerations”, Anal.Chem. 64 (1992) 1317.
[27] Welzel, P.B., “Investigation of adsorption-induced structural-changes of proteins at solid/liquid interfaces by differential scanning calorimetry”, Thermochim. acta 382 (2002) 175.
[28] Goheen, S.C. and Gibbins, B.M., “Protein losses in ion-exchange and hydrophobic interaction high-perferformance liquid chromatography”, J. Chromatogr. 890 (2000) 73.
[29] Vailaya, A. and Horváth, C., “Retention thermodynamics in hydrophobic interaction chromatography”, Ind. Eng. Chem. Res. 35 (1996) 2964.
[30] Haidacher, D., Vailaya, A. and Horváth, C., “Temperature effects in hydrophobic interaction chromatography”, Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 2290.
[31] Valle, E.M.M. and Galan, M.A., “Specific and nonspecific adsorption in affinity chromatography part I. preliminary and equilibrium studies”, Ind. Eng. Chem. Res. 40 (2001) 369.
[32] Valle, E.M.M. and Galan, M.A., “Specific and nonspecific adsorption in affinity chromatography part II. kinetic and mass transfer studies”, Ind. Eng. Chem. Res. 40 (2001) 377.
[33] Kawamoto, H., Mizutani, K. and Nakatsubo, F., “Binding nature and denaturation of protein during interaction with galloylglucose”, Phytochemistry, 46 (1997) 473.
[34] Kawamoto, H. and Nakatsubo, F., “Effects of environmental-factors on 2-stage tannin-protein coprecipitation”, Phytochemistry 46 (1997) 479.
[35] Roseman, D.S. and Baenziger, J.U., “Molecular basis of lutropin recognition by the mannose/GalNAc-4-SO4 receptor”, Proc. Natl. Acad. Sci. USA 97 (2000) 9949.
[36] Feinberg, H., Park-Snyder, S., Kolatkar, A.R., Heise, C.T., Taylor, M.E. and Weis, W.I. “Structure of a c-type carbohydrate recognition domain from the macrophage mannose receptor”, J. Biol. Chem. 275 (2000) 21539.
[37] Zachariou, M. and Hearn, M.T.W., “Application of immobilized metal-ion chelate complexes as pseudocation exchange adsorbents for protein separation”, Biochemistry 35 (1996) 202.
[38] Todd., R.J., Johnson, R.D. and Arnold, F.H., “multiple-site binding interactions in metal-affinity chromatography .1. equilibrium binding of engineered histidine-containing cytochrome-c”, J. Chromatogr. A 662 (1994) 13.
[39] Zachariou, M. and Hearn, M.T.W., “Protein selectivity in immobilized metal affinity-chromatography based on the surface accessibility of aspartic and glutamic-acid residues”, J. Protein Chem. 14 (1995) 419.
[40] Sassenfeld, H.M., "Engineering protein for purification”, Trends Biotechnol. 8 (1990) 88.
[41] Gosta, L., Mats, P., Leif, B. and Klaus, M. ”Metal affinity precipitation of protein carrying genetically attached polyhistidine affinity tails”, Eur. J. Biochem., 198 (1991) 499.
[42] Ho, C.H., Limberis, L. and Stewart, R.J. “Metal-chelating pluronics for immobilization of histidine-tagged proteins at interfaces: firefly luciferase on the polystyrene beads”, J. Chin. Colloid & Interface Soc. 20 (1997) 95.
[43] Dill, K.A., “Dominant forces in protein folding”, Biochemistry 29 (1990) 7133.
[44] Barlow, D.J. and Thornton, J.M., “Ion-Pairs in Proteins”, J. Mol. Biol. 168 (1983) 867
[45] Goto., Y. and Fink., A.L., “Conformational states of beta-lactamase - molten-globule states at acidic and alkaline ph with high salt”, Biochemistry 28 (1989) 945
[46] Scheiner, S. and Hillenbrand, E.A., “Modification of pK values caused by change in h-bond geometry”, Proc. Natl. Acad. Sci USA 82 (1985) 2741
[47] Ragone, R., “Hydrogen-bonding classes in proteins and their contribution to the unfolding reaction”, Protein Sci. 10 (2001) 2075.
[48] Baxter, N.J., Hosszu, L.L.P., Waltho, J.P. and Williamson, M.P., “Characterization of low free-energy excited-states of folded proteins”, J. Mol. Biol. 284 (1998) 1625.
[49] Wiggins, P.M., “Hydrophobic hydration , hydrophobic forces and protein folding”, Physica A 238 (1997) 113.
[50] Robinson, G.W., Cho, C.H., "Role of hydration water in protein unfolding”, Biophys. J. 77 (1999) 3311.
[51] Makhatadze, G.I. and Privalov, P.L., “Energetics of protein-structure”, Adv. Protein Chem. 47 (1995) 307.
[52] Bruinsma, G.M., Mei, H.C. and Busscher, H.J., “Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses”, Biomaterials 22 (2001) 3217.
[53] Perkins, T.W., Mak, D.S., Root, T.W. and Lightfoot, E.N., “Protein retention in hydrophobic interaction chromatography: modeling variation with buffionic strength and column hydrophobicity”, J. Chromatogr. A 766 (1997) 1.
[54] Arakawa, T., “Thermodynamic analysis of the effect of concentrated salts on protein interaction with hydrophobic and polysaccharide columns”, Arch. Biochem. Biophys. 248 (1986) 101.
[55] Ma, J.C. and Dougherty, D.A., “The cation interaction”, Chem.Rev. 97 (1997) 1303.
[56] Packer, M.J., Dauncey, M.P. and Hunter, C.A., “Sequence-dependent dna-structure - dinucleotide conformational maps”, J. Mol. Biol. 295 (2000) 71.
[57] Packer, M.J., Dauncey, M.P. and Hunter, C.A., “Sequence-dependent dna-structure - tetranucleotide conformational maps”, J. Mol. Biol. 295 (2000) 85.
[58] Hunter, C.A. and Sanders, J.K.M., “The nature of pi-pi interactions”, J. Am. Chem. Soc. 112 (1990) 5525.
[59] Hunter, C.A., Lawson, K.R., Perkins, J. and Urch, C.J., “Aromatic interactions”, J. Chem. Soc. Perkin Trans. 2 (2001) 651.
[60] Waters, M.L., “Aromatic interactions in model systems”, Current Opinion in Chemical Biology 6 (2002) 736.
[61] Lahiri, S., Thompson, J.L. and Moore, J.S., “Solveophobically driven π-stacking of phenylene ethynylene macrocycles and oligomers” J. Am. Chem. Soc. 122 (2000) 11315.
[62] Cubberley, M.S. and Iverson, B.L., “1H NMR investigation of solvent effects in aromatic stacking interactions”, J. Am. Chem. Soc. 123 (2001) 7560.
[63] Sindkhedkar, M.D., Mulla, H.R. and Cammers-Goodwin, A. ”Three-state, conformational prode for hydrophobic, π-stacking interactions in aqueous and mixed aqueous solvent systems: anisotropic solvation of aromatic rings”, J. Am. Chem. Soc. 122 (2000) 9271.
[64] Lu, M. and Tjerneld, F., “Interaction between trytophan residues and hydrophobically modified dextran : effect on partitioning of peptides and proteins in aqueous two-phase systems”, J. Chromatogr. A 766 (1997) 99.
[65] Matsushima, A., Fujita, T., Nose, T. and Shimohigashi, Y., “Edge-to-face Ch/π interaction between ligand phe-phenyl and receptor aromatic group in the thrombin receptor activation”, J. Biochem. 128 (2000) 225
[66] Dougherty, D.A., “Cation-pi interactions in chemistry and biology : a new view of benzene , Phe , Tyr , and Trp”, Science 271 (1996) 163.
[67] Burley, S.K. and Petsko, G.A., “Aromatic-aromatic interaction - a mechanism of protein-structure stabilization”, Science 229 (1985) 23.
[68] Regenmortel, M.H.V. and Altschuh, D. in: Gizeli, E. and Lowe, C.R., (Eds.), Biomolecular Sensors, Taylor & Francis Press, New York, 2002, p.10.
[69] Burghardt, T.P., Juranic, N., Macura, S. and Ajtai, K., “Cation-pi interaction in a folded polypeptide”, Biopolymers 63 (2002) 261.
[70] Gallivan, J.P. and Dougherty, D.A., “Cation-pi interactions in structural biology”, Proc. Natl. Acad. Sci. USA 96 (1999) 9459.
[71] Ha, J.H., Capp, M.W., Hohenwalter, M.D., Baskerville, M. and Record, M. T., “Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to dna : possible thermodynamic origins of the "glutamate effect”, J. Mol. Biol. 228 (1992) 252.
[72] Matsushima, A., Fujita, T., Nose, T. and Shimohigashi, Y., “Edge-to-face CH/π interaction between ligand Phe-Phenyl and receptor aromatic group in the thrombin receptor activation”, J. Biochem. 128 (2000) 225.
[73] Kyte, J. and Doolittle, R., “A simple method for displaying the hydropathic character of a protein”, J. Mol. Biol. 157 (1982) 105.
[74] Hopp, T.P. and Woods, K.R., “Prediction of protein antigenic determinants from amino-acid-sequences”, Proc.Nat.Acad.Sci. USA 78 (1981) 3824
[75] Janshoff, A., Steinem, C., Sieber, M., Bayâ, A., M.A., Schmidt and H.J. Galla “Quartz crystal microbalance investigation of the interaction of bacterial toxins with ganglioside containing solid supported membranes”, Eur Biophys J. 26 (1997) 261.
[76] Kim, C.U., Lew, W., Williams, M.A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Chen, M.S., Mendel, D.B., Tai, C.Y., Laver, W.G. and Stevens, R.C., “Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity”, J. Am. Chem. Soc. 119 (1997) 681.
[77] 邊六交, 陳國亮, 李蓉, 李化儒, “蛋白質在疏水色譜中的變性熱力學”, Acta Chimica Sinica 56 (1998) 807.
[78] Norde, W., Anusiem, A.C.I., “Adsorption, desorption and re-adsorption of proteins on solid surfaces”, Colloid Surf. 66 (1992) 73.
[79] Arai, T. and Norde, W., “The behavior of some model proteins at solid-liquid interfaces 1. adsorption from single protein solutions”, Colloid Surf. 51 (1990) 1.
[80] Yamamoto, S. and Ishihara, T., “Ion-exchange chromatography of proteins near the isoelectric points”, J.Chromatogr. A 852 (1999) 31.
[81] Besseling, N.A.M., “Theory of hydration forces between surfaces”, Langmuir 13 (1997) 2113.
[82] Melander, W. and Horváth, C., “Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series”, Arch. Biochem. Biophys. 183 (1977) 200.
[83] Tsai, Y.S., Lin, F.Y., Chen, W.Y. and Lin, C.C., “Isothermal titration microcalorimetric studies of the effect salt concentrations in the interaction between proteins and hydrophobic adsorbents”, Colloids Surf. A 197 (2002) 111
[84] Påhlman, S., Rosengren, J. and Hjerten, S., “”, J. Chromatogr. 131 (1977) 99.
[85] Arakawa, T. and Timasheff, S.N., “Mechanism of protein salting in and salting out by divalent cation salts : balance between hydration and salt binding”, Biochemistry 23 (1984) 5912.
[86] Sanz, Y., Mulholland, F. and Toldra, F., “Purification and characterization of a tripeptidase from lactobacillus-sake”, J. Agric. Food Chem. 46 (1998) 349.
[87] Hearn, M.T.W. and Zhao, G., “Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands”, Anal. Chem. 71 (1999) 4874.
[88] Kovrigin, E.L. and Potekhin, S.A., “On the stabilizing action of protein denaturants: acetonitrile effect on stability of lysozyme in aqueous solutions”, Biophys. Chem. 83 (2000) 45.
[89] Malmsten, M. and Veide, A., “Effects of amino acid composition on protein adsorption”, J. Colloid Interface Sci. 178 (1996) 160.
[90] Gao, J.Y. and Dubin, P.L., “Binding of proteins to copolymers of varying hydrophobicity”, Biopolymers 49 (1998) 185.
[91] Hallen, D., Schon, A., Shehatta, I. and Wadso, I. “Microcalorimetric titration of α-cyclodextran with some straight-chain Alkan-1-ols at 288.15 , 298.15 and 308.15 K”, J. Chem. Soc. Faraday Trans. 88 (1992) 2859.
[92] Marsh, R.J., Jones, R.A.L. and Sfrrazza, M., “Adsorption and displacement of a globular protein on hydrophilic and hydrophobic surfaces”, Colloids Surf. B 23 (2002) 31.
[93] Lu, D.R. and Park, K., “Effect of surface hydrophobicity on the conformational changes of adsorbed fibrinogen”, J. Colloid Interface Sci. 144 (1991) 271.
[94] Latour, R.A. and Hench, L.L., “A theoretical analysis of the thermodynamic contributions for the adsorption of individual protein residues on functionalized surfaces”, Biomaterials 23 (2002) 4633.
[95] Besseling, N.A.M., “Theory of hydration forces between surfaces”, Langmuir 13 (1997) 2113.
[96] Wilce, M.C.J., Aguilar, M.I. and Hearn, M.T.W., “Physicochemical basis of amino-acid hydrophobicity scales - evaluation of 4 new scales of amino-acid hydrophobicity coefficients derived from RP-hplc of peptides”, Anal. Chem., 67 (1995) 1210.
[97] O’Hare, M.J., and Nice, E.C., “”, J. Chromatogr. 171 (1979), 209.
[98] Norde, W. and Favier, J.P., “Structure of adsorbed and desorbed proteins”, Colloid Surf. 64 (1992) 87.
[99] Koutsoukos, P.G. Lyklema, J. and Norde, W., “Protein adsorption on hematite”, J. Colloid Interface Sci. 95 (1983) 385.
[100] Norde, W. and Haynes, C.A., “Reversibility and the mechanism of protein adsorption”, Symposium Series 602 (1995) 26.
[101] Tauc, P., Cochet, S., Algiman, E., Callebaut, I., Cartron, J.P., Brochon, J.C. and Bertrand, O., “Ion-exchange chromatography of proteins: modulation of selectivity by addition of organic solvents to mobile phase - application to single-step purification of a proteinase inhibor form corn and study of the mechanism of selectivity modulation”, J. Chromatogr. A 825 (1998) 17.
[102] Waters, M.S., Sidler, D.R., Simon, A.J., Middaugh, C.R., Thompson, R., August, L.J., Bicker, G., Perpall, H.J. and Grinberg, N., “Mechanistic aspects of chiral discrimination by surface-immobilized α-1-acid glycoprotein”, Chirality 11 (1999) 224.
[103] Lo, Y.L. and Rahman, Y.E., “Effect of lipids on the thermal stability and conformational changes of proteins: ribonuclease a and cytochrome c”, Int. J. Pharm. 161 (1998) 137.
[104] Rumiana, D.T., Ekaterina, I., “A calorimetric study of ph-dependent thermal unfolding of leghemoglobin a form soybean”, Biochimica et Biophysica Acta 1364 (1998) 420.
[105] Kidoaki, S. and Matsuda, T., “Mechanistic aspects of protein/material interactions probed by atomic force microscopy”, Colloids Surf. B 23 (2002) 153.
[106] Dvorsky, R., Sevcik, J., Caves, L.S.D., Hubbard, R.E. and Verma, C.S., “Temperature effects on protein motions - a molecular-dynamics study of RNase-s A”, J. Phys. Chem. B 104 (2000) 10387.
[107] Belval, S., Breton, B., Huddleston, J. and Lyddiatt, A., “Influence of temperature upon protein partitioning in poly(ethylene glycol) salt aqueous two - phase systems close to the critical point with some observations relevant to the partitioning of particles”, J. Chromatogr. B 711 (1998) 19.
[108] Finette, G.M.S., Mao, Q.M. and Hearn, M.T.W., “Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilished metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions”, J. Chromatogr. A 763 (1991) 71.
[109] Fang, F., Aguilar, M.I. and Hearn, M.T.W., “Influence of temperature on the retention behaviour of proteins in cation-exchange chromatography”, J. Chromatogr. A 729 (1996) 49.
[110] Aguilar, M.I. and Hearn, M.T.W. in: Hearn, M.T.W. (Ed.), HPLC of proteins peptides and polynucleotides – contemporary topics and applications, VCH, New York, 1991, p.247.
[111] Herbold, C.W., Miller, J.H. and Goheen, S.C., “Cytochrome-c unfolding on an anionic surface”, J. Chromatogr. A 863 (1999) 137.
[112] Cooper, A., “Heat capacity of hydrogen-bonded networks : an alternative view of protein folding thermodynamics”, Biophys. Chem. 85 (2000) 25.
[113] Edgcomb, S.P., Baker, B.R. and Murphy, K.P., “The energetics of phosphate binding to a protein complex”, Protein Science 9 (2000) 927.
[114] Gill, D.S., Roush, D.J., Shick, K.A. and Willson, R.C., “Microcalorimetric characterization of the anion-exchange adsorption of recombinant cytochrome b5 and its surface-charge mutants”, J. Chromatogr. A 715 (1995) 81.
[115] Miklavc, A., “Temperature-nearly-independent bing constant in several biochemical systems”, Biochem. Pharmacol. 51 (1996) 723.
[116] Zou, Q., Habermannrottinghaus, S.M. and Murphy, K.P., “Urea effects on protein stability - hydrogen-bonding and the hydrophobic effect”, Proteins: Structure Function And Genetics 31, 1998, 107.
[117] Sivars, U. and Tjerneld, F., “Mechanisms of phase behaviour and protein partitioning in detergent/polymer aqueous two-phase system for purification of integral membrane proteins”, Biochimica et Biophysica Acta 1474 (2000) 133.
[118] Zielenkiewicz, A., Kulikov, O.V., Piekarski, H. and Zielenkiewicz, W., “Thermodynamic investigations of interactions in aqueous solutions of glycine and some small peptides with caffeine and 1,3-dimethyluracil at 298.15 K”, Thermochim. acta., 256 (1995) 237.
[119] Kurnaz, M.L. and Maher, J.V., “Interaction of dilute colloidal particles in a mixed solvent”, Phys Rev. E 51 (1996) 5916.
[120] Elcock, A.H. and McCammon, A.J., “Calculation of weak protein-protein interaction: the ph dependence of the second virial coefficient”, Biophys. J. 80 (2001) 613.
[121] Liu, D.Z., Hsieh, Y.L., Chang, S.Y. and Chen, W.Y., “Microcalorimetric studies on the physical stability of polyethylene glycol-grafted liposome”, Colloids Surf. A 212 (2003) 227.
[122] Palecz, B., Piekarski, H. and Romanowski, S., “Studies on homogeneous interactions between zwitterions of several l-af-amino acids in water at a temperature of 298.15 K”, J. Mol. Liq. 84 (2000) 279.
[123] B. Pullman (Ed.), P.O.P.Ts’o in molecular associations in biology, Academic Press, New York, 1968
[124] Norde, W., “Biocolloids and biosurfaces , energy and entropy of protein adsorption”, J. Dispers. Sci. Technol. 13 (1992) 363.
[125] Johnson, R.D. and Arnold, F.H., “The Temkin isotherm describes heterogeneous protein adsorption”, Biochimica et Biophysica Acta 1247 (1995) 293.
[126] Lin, F.Y., Chen, W.Y. and Chen, H.M., “Microcalorimetric study of the effect of hexa-histidine tag and denaturant on the interaction mechanism between protein and metal-chelating gel”, J. Colloid Interface Sci. 238 (2001) 333.
[127] Barnes, P., Finnery, J.L., Nicholas, J.D. and Quinn, J.E., “”, Nature 282 (1979) 459.
[128] Norde, W., In: Surface and interfacial aspects of biomedical polymers, Andrade., J.D., (Eds.), Plenum Press, New York, 1985, vol.2, 263
[129] Flynn, J.H., “The temperature integral its use and abuse”, Thermochim. Acta., 300 (1997) 83.
[130] Boysen, R.I., Wang, Y., Keah, H.H. and Hearn, M.T.W., “Observations on the origin of the non-linear van`t Hoff behaviour of polypeptides in hydrophobic environments”, Biophys. Chem. 77 (1999) 79.
[131] Wieprecht, T., Rothemund, S., Bienert, M. and Krause, E., “Role of helix formation for the retention of peptides in reversed-phase high-performance liquid chromatography”, J. Chromatogr. A 912 (2001) 1.
[132] Vailaya, A. and Horváth, C., “Exothermodynamic relationships in liquid chromatography”, J. Phys. Chem. B 102 (1998) 701.
[133] Vailaya, A. and Horváth, C., “Retention in hydrophobic interaction chromatography and dissolution of nonpolar gases in water”, Biophys. Chem. 62 (1996) 81.
[134] Matulis, D. and Bloomfield, V.A., “Thermodynamics of the hydrophobic effect. II. Calorimetric measurement of enthalpy, entropy, and heat capacity of aggregation of alkylamines and long aliphatic chains”, Biophys. Chem. 93 (2001) 53.
[135] Haghibi, H., Tamura, A. and Sturtevant, J.M., “Significant discrepancies between van`t Hoff and calorimetric enthalpies”, Proc. Natl. Acad. Sci. USA 92 (1995) 5597.
[136] Liu, Y. and Sturtevant, J.M., “Significant discrepancies between van`t Hoff and calorimetric enthalpies. II”, Protein Science 4 (1995) 2559.
[137] Liu, Y. and Sturtevant, J.M., “Significant discrepancies between van`t Hoff and calorimetric enthalpies. III”, Biophys. Chem. 64 (1997) 121.
[138] Raffa, R.B., “(Extra) Thermodynamics of the drug-receptor interaction”, Life Sci. 65 (1999) 967.
[139] Lee, B., ” Isoenthalpic and isoentropic temperatures and the thermodynamics of protein denaturation”, Proc. Natl. Acad. Sci. USA 88 (1991) 5154.
[140] Vailaya, A. and Horváth, C., “Enthalpy-entropy compensation in hydrophobic interaction chromatography”, J. Phys. Chem. 100 (1996) 2447.
[141] Cooper, A., Johnson, C.M., Lakey, J.H. and Nollmann, M., “Heat does not come in different colours: entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions”, Biophys. Chem. 93 (2001) 215.
[142] Liu, L., Yang, C. and Guo, Q.X., “A study on the enthalpy-entropy compensation in protein unfolding”, Biophys. Chem. 84 (2000) 239.
[143] Chen, L.J., Lin, S.Y. and Huang, C.C., “Effect of hydrophobic chain length of surfactants on enthalpy entropy compensation of micellization”, J. Phys. Chem. B 102 (1998) 4350.
[144] Ranatunga, R., Vitha, M.F. and Carr, P.W., “Mechanistic implications of the equality of compensation temperatures in chromatography”, J. Chromatogr. A 946 (2002) 47.
[145] Sinanoğlu, O.; In Molecular Associations in Biology; Pullman, B., Ed.; Academic Press: New York, 1968; p.427.
[146] Vailaya, A. and Horváth, C., “Solvophobic theory and normalized free energies of nonpolar substances in reversed phase chromatography”, J. Phys. Chem. B 107 (1997) 5875.
[147] Sinanoğlu, O., In: Molecular Interactions, Ratajczak, H., Orville-Thomas, W.J., (Eds.), J. Wiley, New York, 1982, vol.3, p.283.
[148] Timasheff, S.N., “The control of protein stability and association by weak interactions with water : how do solvents affect these processes ?”, Annu. Rev. Biophys. Biomol. Struct. 22 (1993) 67.
[149] Record, M.T. and Anderson, C.F., “Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of a two-domain model”, Biophys. J. 68 (1995) 786.
[150] Arakawa, T. and Timasheff, S.N., “Preferential interactions of proteins with salts in concentrated solution”, Biochemistry 21 (1982) 6545.
[151] Roettger, B.F., Myers, J.A., Ladisch, M.R., “Adsorption phenomena in hydrophobic interaction chromatography”, Biotechnol. Prog. 5 (1989) 79.
[152] Record, M.T., Zhang, W. and Anderson, C.F., “Analysis of effects of salts and uncharged solutes on protein and nucleic and equilibria and processes: a practical guide to recognizing and interpreting polyelectrolyte effects , hofmeister effects , and osmotic effects of salts”, Adv. Protein Chem. 51 (1998) 281.
[153] Timasheff, S.N., “Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components”, Proc. Natl. Acad. Sci. USA 99 (2002) 9721.
[154] Hermanson, G.T., Mallia, A.K. and Smith, P.K. (Eds.) Immobilized affinity ligand techniques, Academic Press, San Diego, CA, 1992.
[155] Fang, F., Aguilar, M.I. and Hearn, M.T.W., “Temperature-induced changes in the bandwidth behaviour of proteins separated with cation-exchange adsorbents”, J. Chromatogr. A 729 (1996) 67.
[156] Fausnaugh, J.L., Gupta, S., Pfannkoch, E. and Regnier, F.E., “High-performance hydrophobic interaction chromatography of proteins”, Anal. Biochem. 137 (1984) 464.
[157] Vandulm, P., Lyklema, J. and Norde, W.J., “Ion participation in protein adsorption at solid-surfaces”, J. Colloid Interface Sci. 82 (1981) 77.
[158] Lin, F.Y., Chen, W.Y., Ruaan, R.C. and Huang, H.M., “Microcalorimetric studies of interactions between proteins and hydrophobic ligands in hydrophobic interaction chromatography: effect of ligand chain length, density and the amount of bound protein”, J. Chromatogr. A 872 (2000) 37.
[159] Esquibelking, M.A., Diascabral, A.C., Queiroz, J.A. and Pinto, N.G., “Study of hydrophobic interaction adsorption of bovine serum-albumin under overloaded conditions using flow microcalorimetry”, J. Chromatogr. A 865 (1999) 111.
[160] Dorsey, J.G. and Dill, K.A., “The molecular mechanism of retention in reversed-phase liquid-chromatography”, Chem. Rev. 89 (1989) 331.
[161] Makhatadze, G.I. and Privalov, P.L., “Contribution of hydration to protein-folding thermodynamics .1. the enthalpy of hydration”, J. Mol. Biol. 232 (1993) 639.
[162] Cooper, A., “Thermodynamic analysis of biomolecular interactions”, Current Opinion in Chemical Biology 3 (1999) 557.
[163] Norde, W., “Adsorption of proteins from solution at the solid-liquid interface”, Adv. Colloid Interface Sci. 25 (1986) 267.
[164] Xie, J.R., Aguilar, M.I. and Hearn, M.T.W., “High-performance liquid chromatography of amino acids, peptides and proteins CXXXVIII. adsorption of horse heart cytochrome c onto a tentacle-type cation exchanger”, J. Chromatogr. A, 691 (1995) 263.
[165] Rekker, R.F. and Mannhold., R. (Eds.) Calculation of drug lipophilicity: the hydrophobic fragmental constant approach, Wiley, Weinheim, 1992
[166] Yoon, J.Y., Kim, J.H. and Kim, W.S., “The relationship of interaction forces in the protein adsorption onto polymeric microspheres”, Colloids Surf. A 153 (1999) 413.
[167] Lin, F.Y., Chen, W.Y. and Hearn, M.T.W., “Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography : effects of salts , hydrophobicity of the sorbent , and structure of the protein”, Anal. Chem. 73 (2001) 3875.