| 研究生: |
陳友元 You-Yuan Chen |
|---|---|
| 論文名稱: |
電子束曝光製程氮化矽微環型共振腔之研究分析 The study and analysis of silicon nitride microring resonator by electron beam lithography |
| 指導教授: |
王培勳
Pei-Hsun Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 波導 、氮化矽 |
| 外文關鍵詞: | waveguide, Silicon nitride |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要內容為氮化矽波導微環型共振腔(Microring resonator)的製作。氮化矽用於集成非線性光學應用,為了獲得在線性或非線性狀態下均具有良好性能的光學元件,氮化矽光子學現今已成為非線性光學領域的絕佳平台波長轉換、超連續譜產生、頻率梳應用等。本論文將討論以電子束曝光顯影架構下的共振腔製程,首先討論電漿增強式化學氣相沉積(Plasma-enhanced chemical vapor deposition, PECVD)與低壓化學氣相沉積(Low-pressure chemical vapor deposition, LPCVD)所沉積的氮化矽作為波導,比較這兩種沉積系統所得的氮化矽波導後,高品質因子特性較好;第二部分則比較不同厚度的氮化矽波導;埋入氧化層對波導的影響;最後討論波導高溫退火之影響。在製程上本論文是採用電子束(Electron beam lithography)光刻進行曝光,使用Ma2405負光阻作為圖案的轉移,相較於傳統的紫外線光刻技術有較好的高解析度,在製作氮化矽波導有更小線寬的達成,再利用乾蝕刻完成氮化矽波導圖形轉移。最後也會進行高溫退火技術,將N-H鍵消除,降低傳播固有損耗,研究結果可得到品質因子9*104,建立國內氮化矽微共振腔平台基礎。此外,會介紹氮化鎵波導製程,相較於氮化矽波導有著較高的折射率、二倍頻的產生、帶寬隙等優點,對未來非線性光學元件的發展上有著不可或缺的重要性。
The thesis discusses the fabrication of silicon nitride waveguide microring resonator with electron-beam (e-beam) lithography. Recently, silicon nitride has been widely used for integrated photonics. In order to obtain optical functions both in linear or nonlinear applications, silicon nitride has now become an excellent photonics platform, especially in the field of nonlinear optics, such as wavelength conversion, supercontinuum generation, and frequency combs, due to its nonlinearity coefficient and large bandgap. This thesis will first discuss silicon nitride film formation for the waveguide core with both plasma-enhanced chemical vapor deposition and low-pressure chemical vapor deposition. The high quality factor obtained by these two deposition systems will be compared. Second, we will show the effect of silicon nitride thickness, buried oxide layer thickness, and the thermal annealing on the quality factor of micro-ring resonators. In the fabrication process, electron beam lithography is applied with negative photoresist Ma2405 for pattern transfer. Compared with the traditional ultraviolet lithography technology, it has better resolution down to 10 nm, while a few hundred nanometer linewidth and gap are needed for the fabrication of silicon nitride waveguides. The silicon nitride waveguide is then patterned by (anisotropic) dry etching. Finally, the high-temperature annealing will be demonstrated. By eliminating the N-H bond and reducing the inherent loss of waveguide propagation, we obtain the quality factor of 9*104 with free spectral range (FSR) ~2.0 nm and demonstrate a domestic silicon nitride micro-resonant cavity platform. In addition, preliminary data of gallium nitride waveguides will also be shown, which have the advantages of higher refractive index, nonlinear coefficient, bandwidth gap, and negligible two-photon absorption. It opens up a new path for future applications in nonlinear photonics.
[1] Soref, Richard. "The past, present, and future of silicon photonics." IEEE Journal of selected topics in quantum electronics 12.6 (2006): 1678-1687.
[2] M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide
platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[3] W. D. Sacher, Y. Huang, G. -Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic
[4] M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG
[5] Little, Brent E., et al. "Microring resonator channel dropping filters." Journal of lightwave technology 15.6 (1997): 998-1005.
[6] Almeida, Vilson R., et al. "All-optical control of light on a silicon chip." Nature 431.7012 (2004): 1081-1084.
[7] Gardes, F. Y., et al. "High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode." Optics express 17.24 (2009): 21986-21991.
[8] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[9] T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[10] K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasmadeposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[11] D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[12] C. J. Krückel, A. Fülöp, Z. Ye, P. A. Andrekson, and V. Torres-Company, “Optical bandgap engineering in nonlinear silicon nitride waveguides,” Opt. Express 25(13), 15370–15380 (2017).
[13] C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P.Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[14] T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in silicon nitride nanostructures,” Opt. Express 21(2), 2012–2017 (2013).
[15] Wang, Linghua, et al. "Nonlinear silicon nitride waveguides based on a PECVD deposition platform." Optics express 26.8 (2018): 9645-9654.
[16] Li, Qing, et al. "Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform." Optics express 21.15 (2013): 18236-18248.
[17] Spencer, Daryl T., et al. "Integrated Si 3 N 4/SiO 2 ultra high Q ring resonators." IEEE Photonics Conference 2012. IEEE, 2012.
[18] Gondarenko, Alexander, Jacob S. Levy, and Michal Lipson. "High confinement micron-scale silicon nitride high Q ring resonator." Optics express 17.14 (2009): 11366-11370.
[19] Gaeta, Alexander L., Michal Lipson, and Tobias J. Kippenberg. "Photonic-chip-based frequency combs." nature photonics 13.3 (2019): 158-169.
[20] Yamada, Hirohito, et al. "Nonlinear-optic silicon-nanowire waveguides." Japanese journal of applied physics 44.9R (2005): 6541.
[21] X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang,“Integrated High-Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018). [23]
[22] Sekiya, Takuji, Takashi Sasaki, and Kazuhiro Hane. "Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 33.3 (2015): 031207.
[23] Wilson, Dalziel J., et al. "Integrated gallium phosphide nonlinear photonics." Nature Photonics 14.1 (2020): 57-62.
[24] Aitchison, J. Stewart, et al. "The nonlinear optical properties of AlGaAs at the half band gap." IEEE Journal of Quantum Electronics 33.3 (1997): 341-348.
[25] https://www.microresist.de/en/produkt/ma-n-2400-series/
[26] 半導體製程技術導論第三版 蕭宏 原著
[27] Liu, Jia, et al. "Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation." Optics Express 28.13 (2020): 19270-19280.
[28] https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp
[29] http://in.ncu.edu.tw/~osc/3_1_2.htm
[30] Xiao, Shijun, et al. "Modeling and measurement of losses in silicon-on-insulator resonators and bends." Optics Express 15.17 (2007): 10553-10561.
[31] Dong, Po, et al. "Wavelength-tunable silicon microring modulator." Optics express 18.11 (2010): 10941-10946.
[32] Qiang, Zexuan, Weidong Zhou, and Richard A. Soref. "Optical add-drop filters based on photonic crystal ring resonators." Optics express 15.4 (2007): 1823-1831.
[33] Yang, Chris, and John Pham. "Characteristic study of silicon nitride films deposited by LPCVD and PECVD." Silicon 10.6 (2018): 2561-2567.
[34] Subramanian, A. Z., et al. "Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line." IEEE Photonics Journal 5.6 (2013): 2202809-2202809.
[35] Li, Qing, et al. "Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform." Optics express 21.15 (2013): 18236-18248.
[36] Gorin, A., et al. "Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties." Optics Express 16.18 (2008): 13509-13516.
[37] Spencer, Daryl T., et al. "Integrated Si3N4/SiO2 ultra high Q ring resonators." IEEE Photonics Conference 2012. IEEE, 2012.
[38] Gounaridis, Lefteris, et al. "High performance refractive index sensor based on low Q-factor ring resonators and FFT processing of wavelength scanning data." Optics express 25.7 (2017): 7483-7495.
[39] Chao, Chung-Yen, Wayne Fung, and L. Jay Guo. "Polymer microring resonators for biochemical sensing applications." IEEE journal of selected topics in quantum electronics 12.1 (2006): 134-142.
[40] Hady, Laila K., Darko Kajfez, and Ahmed A. Kishk. "Dielectric resonator antenna in a polarization filtering cavity for dual function applications." IEEE Transactions on Microwave Theory and Techniques 56.12 (2008): 3079-3085.