| 研究生: |
陳冠文 Guan-Wen Chen |
|---|---|
| 論文名稱: |
溫度非均向性對於地球磁層頂二維結構之影響 The Effects of Temperature Anisotropy on Two-Dimensional Earth’s Magnetopause Structures |
| 指導教授: |
郝玲妮
Lin-Ni Hau |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 磁層頂 、Grad-Shafranov 重建 、磁重連 、撕裂模不穩定 、溫度非均向 |
| 外文關鍵詞: | Magnetopause, Grad-Shafranov reconstruction, Magnetic reconnection, Tearing instability, Anisotropic temperature |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Grad-Shafranov(GS)重建方法可以利用單一人造衛星的觀測資料,建構出空間中二維磁場與電漿磁流體力平衡結構的數值分佈,至今已被廣泛運用在重建地球磁層頂的二維結構。溫度非均向性是太空中重要的電漿特性,而過去的GS重建模式均未將此特性包含其中。本論文首次發展以描述電漿熱力狀態的double-polytropic energy closure為基礎、包含溫度非均向性之磁流體GS重建數值模式,且首度利用THEMIS (The Time History of Events and Macroscale Interactions during Substorms)與MMS (Magnetospheric Multiscale)人造衛星穿越地球磁層頂的高解析度觀測資料,重建地球磁層頂之二維磁場與電漿結構,以及探討溫度非均向性與不同的熱力狀態對於磁層頂結構的效應。研究結果顯示,溫度非均向對於磁層頂的磁島結構有顯著的效應,然對於磁重連的X-line結構較無影響。
Grad-Shafranov (GS) reconstruction method can reveal the two-dimensional magnetohydrodynamic (MHD) equilibrium plasma and magnetic field structures by using spacecraft observational data. The GS reconstruction technique has been widely applied to reconstruct the Earth’s magnetopause structures. The temperature anisotropy is an important characteristic of Earth’s space plasma environments. However, this property has not been considered in the previous GS reconstruction procedures. In this study we first develop the GS reconstruction numerical scheme with temperature anisotropy based on the double-polytropic MHD plasma models. We then apply the GS reconstruction scheme to the Earth’s magnetopause crossing events observed by the THEMIS (The Time History of Events and Macroscale Interactions during Substorms) and MMS (Magnetospheric Multiscale) spacecraft. We analyze the effects of plasma temperature anisotropy and thermodynamics on the Earth’s magnetopause structures. The reconstruction results show that the temperature anisotropy and energy closures may affect the features of magnetic islands within the magnetopause but have less effects on the magnetic reconnection with a single X-line.
Auster, H. U., K. H. Glassmeier, W. Magnes, O. Aydogar, W. Baumjohann, D. Constantinescu, et al. (2008). The THEMIS fluxgate magnetometer. Space Science Reviews, 141 (1‐4), 235–264.
Chen, G.‐W., and, L.‐N. Hau (2018). Grad‐Shafranov reconstruction of Earth's magnetopause with temperature anisotropy. J. Geophys. Res., 123, 7358-7369.
Chiou, S.‐W., and L.‐N. Hau (2002), Tearing‐mode instability in anisotropic plasmas: Effects of energy closure, Geophys. Res. Lett., 29 (16).
Chiou, S.‐W., and L.‐N. Hau (2003). Explosive and oscillatory tearing‐mode instability in gyrotropic plasmas. Phys. Plasmas, 10 (10), 3813-3816.
Chou, Y.-C., and L.-N. Hau, (2012), A statistical study of magnetopause structures: Tangential versus rotational discontinuities, J. Geophys. Res, 117, A08232.
DeHoffmann, F., and Teller, E., Magneto-hydrodynamic shocks (1950), Phys. Rev., 80, 692.
Dungey, J. W. (1961), Interplanetary Magnetic Field and the Auroral Zones, Physical Review Letters, 6(2), 47-48.
Hasegawa, H., B. U. Ö. Sonnerup, M. W. Dunlop, A. Balogh, S. E. Haaland, B. Klecker, G. Paschmann, B. Lavraud, I. Dandouras, and H. Rème (2004), Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method, Ann. Geophys., 22, 1251-1266.
Hasegawa, H., B. U. Ö. Sonnerup, B. Klecker, G. Paschmann, M. W. Dunlop, and H. Rème (2005), Optimal reconstruction of magnetopause structures from Cluster data, Ann. Geophys., 23, 973-982.
Hasegawa, H., B. U. Ö. Sonnerup, C. J. Owen, B. Klecker, G. Paschmann, A. Balogh, and H. Rème (2006), The structure of flux transfer events recovered from Cluster data, Ann. Geophys., 24, 603-618.
Hasegawa, H., R. Nakamura, M. Fujimoto, V. A. Sergeev, E. A. Lucek, H. Rème, and Y. Khotyaintsev (2007), Reconstruction of a bipolar magnetic signature in an earthward jet in the tail: Flux rope or 3D guide‐field reconnection? J. Geophys. Res., 112, A11206.
Hasegawa, H., B. U. Ö. Sonnerup, T. K. M. Nakamura (2010), Recovery of time evolution of Grad-Shafranov equilibria from single-spacecraft data: Benchmarking and application to a flux transfer event. J Geophys Res, 115, A11219.
Hasegawa, H., B. U. Ö. Sonnerup, Q. Hu, and T. K. M. Nakamura (2014), Reconstruction of an evolving magnetic flux rope in the solar wind: Decomposing spatial and temporal variations from single spacecraft data, J. Geophys. Res. Space Physics, 119, 97-11.
Hau, L.-N., and B. U. Ö. Sonnerup (1993), On slow-mode waves in an anisotropic plasma, Geophys. Res. Lett., 20, 1763.
Hau, L.‐N., T.‐D. Phan, B. U. Ö. Sonnerup and G. Paschmann (1993). Double‐polytropic closure in the magnetosheath. Geophys. Res. Lett, 20 (20), 2255-2258.
Hau, L.-N. (1996), General formulation and exact solution for two-dimensional field aligned magnetohydrodynamic equilibrium flows, Phys. Plasmas, 3, 1113.
Hau, L.-N., and B. U. Ö. Sonnerup (1999), Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data, J. Geophys. Res., 104(A4), 6899-6917.
Hau, L.-N., and S.-W. Chiou (2001), On the linear and nonlinear resistive tearing-mode instabilities, J. Geophys. Res., 106, 8371-8380.
Hau, L.-N. C.-K. Chang, and G.-W. Chen (2020), Mirror-wave Structures in the Solar Wind: Grad–Shafranov Reconstruction, MHD, and Hall MHD Simulations with Double-polytropic Energy Closures, Astrophys. J., 900, 97.
Hau, L.-N. G.-W. Chen, and C.-K. Chang (2020), Mirror Mode Waves Immersed in Magnetic Reconnection, Astrophys. J. Lett., 903, L12.
Hu, Q., and B. U. Ö. Sonnerup (2000), Magnetopause transects from two spacecraft: A comparison, Geophys. Res. Lett., 27, 1443.
Hu, Q., and B. U. Ö. Sonnerup (2001), Reconstruction of magnetic flux ropes in the solar wind, Geophys. Res. Lett., 28, 467-470.
Hu, Q., and B. U. Ö. Sonnerup (2003), Reconstruction of two-dimensional structures in the magnetopause: Method improvements, J. Geophys. Res., 108(A1), 1011.
Hu. Q, C. W. Smith, N. F. Ness, R. M. Skoug (2004), Multiple flux rope magnetic ejecta in the solar wind. J Geophys Res, 109: A03102.
Hu, Q, C. J. Farrugia, V. A. Osherovich, C. Möstl, A. Szabo, K. W. Ogilvie, R. P. Lepping (2013), Effect of electron pressure on the grad-shafranov reconstruction of interplanetary coronal mass ejections. Sol Phys, 284: 275-291.
Hu, Q., J. Qiu, and S. Krucker (2015), Magnetic field line lengths inside interplanetary magnetic flux ropes. J. Geophys. Res. Space Physics, 120, 5266-5283.
Hu, Q., M. G. Linton, B. E. Wood et al. (2017), The Grad–Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications. Sol Phys, 292, 171.
Hung, C.‐C., L.‐N. Hau, and M. Hoshino (2011), Magnetic reconnection in an anisotropic plasma: Observation and theory, Geophys. Res. Lett., 38, L18106.
Khrabrov, A. V., and B. U. Ö. Sonnerup (1998), DeHoffmann-Teller analysis, in Analysis Methods for Multi-Spacecraft Data, ISSI Sci. Rep. SR-001, edited by G. Paschmann and P. W. Daly, pp. 221-248, Springer, New York.
Lui, A. T. Y., D. G. Sibeck, T. Phan, J. P. McFadden, V. Angelopoulos, and K.-H. Glassmeier (2008), Reconstruction of a flux transfer event based on observations from five THEMIS satellites, J. Geophys. Res., 113, A00C01.
McFadden, J. P., C. W. Carlson, D. Larson, M. Ludlam, R. Abiad, B. Elliott, et al. (2008). The THEMIS ESA plasma instrument and in‐flight calibration. Space Science Reviews, 141(1‐4), 277-302.
Pollock, C., T. Moore, A. Jacques et al. (2016), Fast Plasma Investigation for Magnetospheric Multiscale. Space Sci. Rev., 199, 331-406.
Paschmann, G., B. U. O. Sonnerup, I. Papamastorakis, N. Sckopke, G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, C. T. Russell, and R. C. Elphic (1979), Plasma acceleration at the Earth's magnetopause: Evidence for reconnection, Nature, 282, 243.
Russell, C. T., B. J. Anderson, W. Baumjohann et al. (2016), The Magnetospheric Multiscale Magnetometers. Space Sci. Rev., 199, 189-256.
Sonnerup, B. U. Ö., and L. J. Cahill Jr. (1967), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72(1), 171-183.
Sonnerup, B. U. Ö, L.‐N. Hau, and D. W. Walthour (1992), On steady field‐aligned double‐adiabatic flow, J. Geophys. Res., 97 (A8), 12015-12028.
Sonnerup, B. U. Ö, and L.‐N. Hau (1994), Vortex laws and field line invariants in polytropic field‐aligned MHD flow, J. Geophys. Res., 99( A1), 143-149.
Sonnerup, B. U. Ö., and M. Scheible (1998), Minimum and maximum variance analysis, in Analysis Methods for Multi-Spacecraft Data, ISSI Sci. Rep., SR-001, edited by G. Paschmann and P. W. Daly, pp. 185-220, Springer, New York.
Sonnerup, B. U. Ö., H. Hasegawa, W.-L. Teh, and L.-N. Hau (2006), Grad-Shafranov reconstruction: An overview, J. Geophys. Res., 111, A09204.
Teh, W.-L., and L.-N. Hau (2004), Evidence for pearl-like magnetic island structures at dawn and dusk side magnetopause, Earth Planets Space, 56, 681-686.
Teh, W.-L., and L.-N. Hau (2007), Triple crossings of a string of magnetic islands at duskside magnetopause encountered by AMPTE/IRM satellite on 8 August 1985, J. Geophys. Res., 112, A08207.
Teh, W.-L., B. U. Ö. Sonnerup, and L.-N. Hau (2007), Grad-Shafranov reconstruction with field-aligned flow: First results, Geophys. Res. Lett., 34, L05109.